
X-IO: A High-performance Unified I/O Interface
using Lock-free Shared Memory Processing

Shixiong Qi∗ Han-Sing Tsai† Yu-Sheng Liu†,
K. K. Ramakrishnan∗ Jyh-Cheng Chen†

 ∗University of California, Riverside †National Yang Ming Chiao Tung University

Visit us at:
h*ps://kknetsyslab.cs.ucr.edu/
h*ps://cslab.cs.nycu.edu.tw/

https://kknetsyslab.cs.ucr.edu/
https://cslab.cs.nycu.edu.tw/

2

Cloud-native Applications

• Independently deployable
• Loosely coupled
• Easy to scale out
• Good modularity

Moving from monolithic services to microservices: e.g., the evolution of cellular core

• All-in-one
• Hard to scale out
• Poor modularity

Monolith LTE EPC Microservices 5GC

3

Cloud-native microservice networking

• Microservices are loosely coupled
• Microservices networked together
• Account for task dependencies

• Networked Microservices
• Synchronous I/O

• gRPC, 3GPP Service Bus Interface
• Asynchronous I/O

• Organize communication among a
set of interdependent microservices
as a Directed Acyclic Graph (DAG)

Coupling microservice together

4

Cloud-native microservice networking

• Asynchronous I/O and Synchronous I/O:
• distinct; mismatched for a common implementation

• Asynchronous I/O
• Caller does not wait for a response from callee

• The caller is not blocked waiting for the request
• Unidirectional data exchange: a send/recv pair

• Synchronous I/O
• Caller expects a response from callee

• Caller waits (blocked) until response is returned
• Bidirectional data exchange: two send/recv pairs

Problems

client

request

server
thread

recv()
client
thread

send()

Network

request

response

server
thread

recv()

send()

client
thread

send()

recv()
Network

5

client

request

server
thread

recv()
client
thread

send()

Network

Cloud-native microservice networking

• Utilize Kernel-based networking stack
• High communication overhead for server/client

• Data copies
• Protocol processing
• Context switches
• Interrupts
• Serialization/Deserialization

• CPU cycles and memory bandwidth are
consumed!

Problems

request

response

server
thread

recv()

send()

client
thread

send()

recv()
Network

6

Cloud-native microservice networking

• Multiple producers, Multiple consumers communication pattern
• Contention and lock: performance loss

Problems

recv() send()Producer-1 Consumer-1

recv() send()Producer-2 Consumer-2

recv() send()Producer-3 Consumer-3

recv() send()Producer-4 Consumer-4

7

Cloud-native microservice networking
Summary

§ Mismatched communication models between
Asynchronous I/O and Synchronous I/O

§ Heavyweight kernel-based networking stack

§ Multiple-producer, multiple-consumer
communication pattern

§ Different user sessions or flows need to be
handled in parallel

§ Programming language incompatibility

§ A Unified I/O interface

§ Zero-copy packet delivery

§ Lock-free producer/consumer rings

§ Concurrent connection support

§ Cross-language support

X-IO: A High-performance Unified I/O Interface

8

X-IO: A High-performance Unified I/O Interface

• Shared memory processing with lock-free
producer/consumer rings
• Built in X-IO stack
• We consider DPDK for the implementation

• Other shared memory processing design, e.g.,
SPRIGHT [1], is also applicable

• Raw I/O primitives: zero-copy interface
• Exposed via X-IO stack

Overview: X-IO in a box

application application

• POSIX-like I/O primitives: socket interface &
HTTP/REST APIs
• Exposed via X-IO libs

• Concurrent connection management
• via X-IO stack
• using “Connection Table”

• Cross-language support
• CGo interface in Golang

application

X-IO stack

X-IO
manager

Router

Shared
memory

R

T

application

X-IO stackR

T

application

X-IO stack

X-IO
manager

Router

Shared
memory

R

T

application

X-IO stackR

Tzero-copy api zero-copy api

application

X-IO Libs

X-IO stack

X-IO
manager

Router

Shared
memory

R

T

application

X-IO Libs

X-IO stackR

T

socket
interfaces

HTTP/REST
APIs

zero-copy api zero-copy api

socket
interfaces

HTTP/REST
APIs

application conn_1

X-IO Libs

X-IO stack

X-IO
manager

Router
Connection table

Shared
memory

R

T

application

X-IO Libs

X-IO stackR

T

conn_2 conn_3

socket
interfaces

HTTP/REST
APIs

zero-copy api

Connection table

zero-copy api

socket
interfaces

HTTP/REST
APIs

conn_1 conn_2 conn_3application conn_1

X-IO Libs

X-IO stack

X-IO
manager

Router
Connection table

Shared
memory

R

T

application

X-IO Libs

X-IO stackR

T

conn_2 conn_3

socket
interfaces

HTTP/REST
APIs

CGo interface

zero-copy api

Connection table

zero-copy api

CGo interface

socket
interfaces

HTTP/REST
APIs

conn_1 conn_2 conn_3

[1] Qi, Shixiong, et al. "SPRIGHT: extrac=ng the server from serverless compu=ng! high-performance eBPF-based event-driven, shared-memory processing." Proceedings of the ACM SIGCOMM 2022 Conference. 2022.

9

X-IO: A High-performance Unified I/O Interface

• Building blocks of shared memory processing
• Shared memory pool
• Packet descriptor delivery mechanism

• Deliver packet descriptor instead of packet: NO
memory-memory copy

• Zero-copy I/O primitives from the X-IO stack
• xio_malloc(), xio_tx(), and xio_rx()
• construct a truly zero-copy communication

channel between microservices

Shared memory processing with lock-free producer/consumer rings

• Lock-free packet descriptor delivery
• each X-IO stack has a pair of receive (RX) and transmit

(TX) RINGs
• X-IO stack to share its RING pair with the X-IO manager

• Single-producer, single-consumer ring access
• thereby avoiding having to acquire a lock
• We use the X-IO manager to forward descriptors between

different X-IO stacks

application application

X-IO stack X-IO stack

Shared memory
application application

X-IO stack X-IO stack

Shared memory
application application

X-IO stack X-IO stackpacket descriptor

Shared memory
application

X-IO stack
R

T

application

X-IO stack
R

T

Shared memory
application

X-IO stack

X-IO
manager

Router
R

T

application

X-IO stack
R

T

Shared memory
application

X-IO stack

X-IO
manager

Router
R

T

application

X-IO stack
R

T
zero-copy api
xio_malloc() xio_tx()

xio_rx() zero-copy api
xio_malloc() xio_tx()

xio_rx()

10

X-IO: A High-performance Unified I/O Interface

• Supporting seamless porting of applications that depend on the POSIX socket API
• Exposed via an abstraction layer, namely X-IO lib

• equivalent Golang-style socket interfaces.
• Read(), Write(), Listen(), Accept(), Dial()

POSIX-like I/O primitives in X-IO: socket interface

import "xio"

/* X-IO-based socket server */
listener, _ := xio.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer)

conn.Close()

/* X-IO-based socket client */
conn, err := xio.Dial(server_address)

send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer)

conn.Close()

import "net"

/* Golang-style socket server */
listener, _ := net.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer)

conn.Close()

/* Golang-style socket client */
conn, err := net.Dial(server_address)

send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer)

conn.Close()

11

X-IO: A High-performance Unified I/O Interface

• Read(): basic read socket interface in X-IO
• supports both “blocking” and “non-blocking” modes

• “blocking” mode:
• The caller of Read() is blocked until it receives the

request from the X-IO stack
• Blocking primitive:

• wait until it is signaled to wake up
• Batch wake-up mechanism

• a receive queue to buffer the requests
• Reduce wake-up overhead

• “non-blocking” mode:
• The caller of Read() is not blocked waiting for the

request
• Requires busy-polling

POSIX-like I/O primitives in X-IO: Read() interface

R

X-IO stackApp.

Packet
handler

X-IO Libs

3. RXreceive queue

Read()
1. call 2. blocked

cond. variable

6. dequeue
desc.

5. unblock
Read()

4. enqueue
desc.recv

buffer 7. write recv
buf

8. return

12

X-IO: A High-performance Unified I/O Interface

• Write(): basic write socket interface in X-IO
• We only support blocking Write() in X-IO
• Ensure all of the request payload is written into the shared memory buffer before the Write()

returns

POSIX-like I/O primitives in X-IO: Write() interface

T

X-IO stackApp.

Packet
handler

X-IO Libs

4. enqueue
desc.

Write()
1. call

2. pass send buffer to
packet hanlder

5. return

3. write payload to
shared memory

send
buffer

13

X-IO: A High-performance Unified I/O Interface

• Listen(), Accept(), Dial(), Close(): Connection Establishment & Teardown
• Both Read() and Write() interfaces in X-IO require an apriori established connection for data

transmission
• Concurrent connection support

• Core components: connection table in X-IO stack
• Distribute requests to different connections via IP 4-tuples lookup

POSIX-like I/O primitives in X-IO: connection management

X-IO stackX-IO Libsapplication (server)

conn_1.Read()Thread-1

conn_2.Read()Thread-2

conn_3.Read()Thread-3

receive queue

Packet
handler

Conn.
table

lookup
R

IP 4
tuples

2

1

3

14

X-IO: A High-performance Unified I/O Interface

• Pros: seamless porting of existing applications
• Cons:

• Copies introduced by “send_buffer” and “receive_buffer”
• Price we pay to maintain alignment with POSIX-like APIs

POSIX-like I/O primitives in X-IO: socket interface

import "xio"

/* X-IO-based socket server */
listener, _ := xio.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer)

conn.Close()

/* X-IO-based socket client */
conn, err := xio.Dial(server_address)

send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer)

conn.Close()

import "net"

/* Golang-style socket server */
listener, _ := net.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer)

conn.Close()

/* Golang-style socket client */
conn, err := net.Dial(server_address)

send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer)

conn.Close()

15

request

response

server
thread

Read()
xio_rx()

Write()
xio_tx()

client
thread

Write()
xio_tx()

Read()
xio_rx()

request

server
thread

Read()
xio_rx()

client
thread

Write()
xio_tx()

X-IO: A High-performance Unified I/O Interface

Asynchronous and synchronous I/O between microservices can be built using either X-IO’s socket
interface or X-IO’s zero-copy interface

• Case study – using X-IO to support 3GPP SBI
• 3GPP SBI is built on top of HTTP/REST APIs
• X-IO offers equivalent HTTP/REST APIs built on X-IO’s socket interface to support seamless porting

• Remove redundant data copies and protocol parsing

Asynchronous & Synchronous data exchange with X-IO

A single HTTP call

16

Evaluation

1. X-IO’s zero-copy interface vs. Linux io_uring (TCP socket, UNIX-domain socket)
2. POSIX-like socket interface performance:

• X-IO’s Read()/Write() vs. Linux Read()/Write() (TCP socket, UNIX-domain socket)

3. HTTP/REST API performance
• X-IO’s “xio/http” vs. Golang’s “net/http”

Experiment Setup

17

Evaluation

• A client application and an echo server application
• Placed on the same node
• Both developed in C

• Round-trip latency
• X-IO’s zero copy interface achieves 2.8×∼4.1× lower

round-trip latency than io_uring
• Improvement over both TCP socket or UDS

• X-IO’s zero copy interface has constant latency across
various message sizes
• demonstrating the benefit of zero-copy shared memory

communication with X-IO
• 4 packet copies are incurred for every packet round-trip

when using io_uring

X-IO’s zero-copy interface vs. Linux io_uring

64 128 256 512 1K 2K 4K 8K

packe) (ize (B+)e()

0

3

6

9

12

E
2
E
 l
a
)
e
n
c
+
 (
u
(
)

io_urin + TCP

io_urin + UDS

XIO

18

Evaluation

• A pair of client and server application
• Placed on the same node
• Both developed in Golang
• Vary the number of concurrent connections (persistent)
• Each connection is allowed to have 1 in-flight request

(64B)

• Round-trip latency
• X-IO consistently has lower latency (~1.6x) than TCP

socket

• The latency of X-IO-no-batch is always higher than
default X-IO
• Performing wake-up (unblocking) of multiple

connections in a batch that can amortize the overheads
of interrupts and context switches

POSIX-like socket interface performance

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

of conn.

0

.3K

.6K

.9K

A
v

.
la
)

n
c
-
 (
u
(
)

XIO-w#)h-ba)ch

TCP (ock)

UDS

XIO-no-ba)ch

19

Evaluation

• An HTTP echo server/client pair
• Placed on the same node
• Both developed in Golang
• Vary the number of concurrent HTTP connections (persistent)
• Each connection is allowed to have 1 in-flight request (64B)

• HTTP Requests per second
• X-IO achieves 1.4×∼2.3× improvement in RPS and latency

• X-IO avoids extra copies and protocol parsing between socket
interface and HTTP interface

• More scalable than Golang’s HTTP

HTTP/REST API performance

1 2 4 8 16 32 64 128256512
of conn.

0

10

20

30

40

RP
S

(1
K

 e
q/

s)

XIO
HTTP

20

Conclusion

• X-IO stack
• A shared memory based network stack with lock-free producer/consumer rings

• Raw I/O primitives exposed by X-IO stack

• Zero-copy data transmission
• Superior performance: 2.8×∼4.1× lower latency over both TCP socket or UDS

• POSIX-like primitives abstracted by X-IO lib

• Seamless porting of applications that use POSIX-like socket interface

• Multiple user session support
• Outperform Linux TCP/IP socket interface: 1.6x improvement
• Competitive performance compared to Linux UNIX-domain socket interface

• HTTP/REST APIs abstracted by X-IO lib

• Seamless porting of applications that use HTTP/REST APIs

• 1.4×∼2.3× improvement in RPS and latency compared to Golang’s HTTP/REST APIs

X-IO is a high-performance, unified I/O interface designed for cloud-native microservices

☞ Find X-IO at: https://github.com/nycu-ucr/xio.git

https://github.com/nycu-ucr/xio.git

21

X-IO is Available

☞ Find X-IO at: https://github.com/nycu-ucr/xio.git

https://github.com/nycu-ucr/xio.git

