A IEEE % ke
WXNETSOFT [TH RIVERSIDE

X-10: A High-performance Unified I/O Interface
using Lock-free Shared Memory Processing

Shixiong Qi* Han-Sing Tsait Yu-Sheng Liuf,
K. K. Ramakrishnan* Jyh-Cheng Chent
*University of California, Riverside TNational Yang Ming Chiao Tung University

Visit us at:
https://kknetsyslab.cs.ucr.edu/
https://cslab.cs.nycu.edu.tw/

https://kknetsyslab.cs.ucr.edu/
https://cslab.cs.nycu.edu.tw/

etworked
. . . stems C:rou
Cloud-native Applications % pﬁ]mvmsmz

Moving from monolithic services to microservices: e.g., the evolution of cellular core

Monolith LTE EPC Microservices 5GC
8 \EPC (NRF] [AUSF] [PCF] (UDM]Cortr!
= f I Bl plane
e interface
WME Hss PORF (NSSF) (AMF] (SMF) [(UDR)
(GO R UEs 0 \NZI N4 Data plane
)] ‘ " @ N3 N6 "
e B B O OF== @ g oo
* All-in-one * Independently deployable
* Hard to scale out * Loosely coupled
* Poor modularity * Easy to scale out

* Good modularity

Cloud-native microservice networking

Coupling microservice together

* Microservices are loosely coupled
* Microservices networked together
* Account for task dependencies

* Networked Microservices

* Synchronous I/O

* gRPC, 3GPP Service Bus Interface
* Asynchronous |I/O

* Organize communication among a

set of interdependent microservices
as a Directed Acyclic Graph (DAG)

NRF AUSF PCF
} } sBl
interface
NSSF AMF SMF
UESD\NZI N4
@ n |
—_—T— R%N- UPF

etworked

ystems CGroup

% [TH RIVERSIDE

UDM |

UDR

Control
plane

Data plane

N6 Data
) "C network

Cloud-native microservice networking

Problems

* Asynchronous /O and Synchronous I/O:

* distinct; mismatched for a common implementation

Caller does not wait for a response from callee
* The caller is not blocked waiting for the request

Unidirectional data exchange: a send/recv pair

Caller expects a response from callee
* Caller waits (blocked) until response is returned

Bidirectional data exchange: two send/recv pairs

request

request

response

@

etworked
ystems CGroup

[TH RIVERSIDE

etworked
. . . . ystems CGroup
Cloud-native microservice networking % [T RIVERSIDE
Problems

 Utilize Kernel-based networking stack

* High communication overhead for server/client
* Data copies
* Protocol processing
* Context switches
* Interrupts
* Serialization/Deserialization

request

server
thread

* CPU cycles and memory bandwidth are
consumed!

request

response

Cloud-native microservice networking

Problems

* Multiple producers, Multiple consumers communication pattern
* Contention and lock: performance loss

Producer-1 recv() send()
Producer-2 recy()

send()

Producer-3 = recv() send()

Producer-4 recv() send()

@

Consumer-1
Consumer-2
Consumer-3

Consumer-4

etworked
ystems CGroup

[TH RIVERSIDE

— o
Cloud-native microservice networking WRWERsmE

Summary

» = A Unified I/O interface
= Heavyweight kernel-based networking stack » = Zero-copy packet delivery
» » Lock-free producer/consumer rings
» * Concurrent connection support
» = Cross-language support

X-10: A High-performance Unified 1/0 Interface

= Mismatched communication models between

Asynchronous I/O and Synchronous I/O

= Multiple-producer, multiple-consumer
communication pattern

= Different user sessions or flows need to be
handled in parallel

* Programming language incompatibility

etworked
ystems CGroup

X-10: A High-performance Unified 1/O Interface % [T RIVERSIDE

Overview: X-10 in a box

* Shared memory processing with lock-free
producer/consumer rings
* Built in X-10 staclk

* We consider DPDK for the implementation

* Other shared memory processing design, e.g.,
SPRIGHT [I], is also applicable

* Raw IO primitives: zero-copy interface
* Exposed via X-10 stack

* POSIX-like I/O primitives: socket interface &

HTTP/REST APIs

* Exposed via X-1O libs
 Concurrent connection management

e via X-1O stack

* using “Connection Table”
* Cross-language support
* CGo interface in Golang

application CO"R_'

conn_2 conn_3

7\ 7\
: X-10 Libs ‘ / /
HTTP/REST socket
APIs interfaces

J

| 4

conn | conn 2 conn 3 i i
- — - application

I\ /\
\ \ \ X-10 Libs f
HTTP/REST socket

APls interfaces

CGo interface

zero-copy api

X-10 stack Connection table

X-10
manager

~ Rogter I
) -<_¢ ~

CGo interface

zero-copy api

8 [1] Qi, Shixiong, et al. "SPRIGHT: extracting the server from serverless computing! high-performance eBPF-based event-driven, shared-memory processing." Proceedings of the ACM SIGCOMM 2022 Conference. 2022.

etworked
ystems CGroup

X-10: A High-performance Unified 1/O Interface % [T RIVERSIDE

Shared memory processing with lock-free producer/consumer rings

* Building blocks of shared memory processing * Lock-free packet descriptor delivery

* Shared memory pool * each X-1O stack has a pair of receive (RX) and transmit
* Packet descriptor delivery mechanism (TX) RINGs
* Deliver packet descriptor instead of packet: NO * X-lO stack to share its RING pair with the X-IO manager
memory-memory copy * Single-producer, single-consumer ring access
* thereby avoiding having to acquire a lock
« Zero-copy 110 primitives from the X-10 stack * We use the X-1O manager to forward descriptors between

different X-lO stacks

* xio_malloc(), xio_tx(), and xio_rx()
* construct a truly zero-copy communication
channel between microservices

Shared memory

X-10
manager

application application

xio_malloc() xio_tx() ; xio_malloc() xio_tx()

zero-copy api xio_rx() N\ zero-copy api | xio_rx()

X-10 stack -4 X-10 stack

etworked
ystems CGroup

X-10: A High-performance Unified 1/O Interface % [T RIVERSIDE

POSIX-like 1/O primitives in X-10: socket interface

* Supporting seamless porting of applications that depend on the POSIX socket API

* Exposed via an abstraction layer, namely X-IO lib
* equivalent Golang-style socket interfaces.

* Read(), Write(), Listen(), Accept(), Dial()

import "net" import "xio"

/* Golang-style socket server */ /* X-10-based socket server */

listener, _:= net.Listen(server_address listener, _:=xio.Listen(server_address)

conn, _ := listener.Accept() conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE) receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer) - n, err := conn.Read(receive_buffer)
conn.Close() conn.Close()

/* Golang-style socket client */ /* X-10-based socket client */

conn, err := net.Dial(server_address) conn, err := xio.Dial(server_address)
send_buffer := make([]byte, SEND_MSG_SIZE) send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer) n, err := conn.Write(send_buffer)
conn.Close() conn.Close()

10

11

X-10: A High-performance Unified 1/O Interface %

POSIX-like I/O primitives in X-10: Read() interface

* Read(): basic read socket interface in X-10
* supports both “blocking” and “non-blocking” modes

* “blocking” mode:

* The caller of Read() is blocked until it receives the
request from the X-10 stack

etworked
ystems CGroup

[TH RIVERSIDE

App. X-10O Libs X-10 stack
) Bl?ckmg.tprln.wllgv.e: ionaled t k Read() cond. variable
walt until It is S|gna. e O wake up I call 2. blocked 5 unblock
* Batch wake-up mechanism

* areceive queue to buffer the requests 6. dequeu Read) Packet l§\
* Reduce wake-up overhead desc. handler -
receive queue o I 3.R
* “non-blocking” mode: 8. el oSy = rite recy desc.
* The caller of Read() is not blocked waiting for the | buf
request :

* Requires busy-polling

X-10: A High-performance Unified 1/O Interface %

POSIX-like 1/O primitives in X-1O:Write() interface

* Write(): basic write socket interface in X-IO
* We only support blocking Write() in X-IO
* Ensure all of the request payload is written into the shared memory buffer before the Write()

12

returns

3. write payload to

App. X-10 Libs X-10 stack
\VAY/ ‘ite() 2. pass sendl buffer to shar e‘ff memory
l.call = send packet hanlder
buffer ™ Packet
< | handler
‘ 5. return
|

desc.

4. enTeue@

etworked
ystems CGroup

[TH RIVERSIDE

etworked
ystems CGroup

X-10: A High-performance Unified 1/O Interface % [T RIVERSIDE

POSIX-like 1/O primitives in X-lO: connection management

13

* Listen(),Accept(), Dial(), Close(): Connection Establishment & Teardown
* Both Read() and Write() interfaces in X-1O require an apriori established connection for data

transmission

* Concurrent connection support
* Core components: connection table in X-lO stack

* Distribute requests to different connections via IP 4-tuples lookup

application (server)

Thread-| 5 conn ||I.
Thread-2$ conn_|2.

Thread-3$ conn |3.

X-10 Libs

receive

X-10 stack

Packet
handler

X-10: A High-performance Unified 1/O Interface %

POSIX-like 1/O primitives in X-10: socket interface

14

* Pros: seamless porting of existing applications

* Cons:
* Copies introduced by “send_buffer” and “receive_buffer”
* Price we pay to maintain alignment with POSIX-like APIs

import "net"

/* Golang-style socket server */
listener, _:= net.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := _make.({.]bvte. REG\e MSG_SIZE)
n, err := conn.Read(receive_buffer) =

conn.Close()

/* Golang-style socket client */
conn, err := net.Dial(server_address)

send_buffer := m_ake.(L] byte s SEND: MSG_SIZE)
n, err := conn.Wnite(send_buffer) .

conn.Close()

import "xio"

/* X-10-based socket server */
listener, _:=xio.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer :=_make({]byte. REG\. MSG_SIZE)
n, err := conn.Read(receive_buffer) =

conn.Close()

/* X-10-based socket client */
conn, err := xio.Dial(server_address)

send_buffer := m_ake.(L] byte s SEND: MSG_SIZE)
n, err := conn.Wnite(send_buffer) .

conn.Close()

etworked
ystems CGroup

[TH RIVERSIDE

etworked
ystems CGroup

X-10: A High-performance Unified 1/O Interface % [T RIVERSIDE

Asynchronous & Synchronous data exchange with X-10

Asynchronous and synchronous I/O between microservices can be built using either X-10’s socket
interface or X-10’s zero-copy interface

WriteQ 1 request Read () WriteQ request

A single HTTP call

* Case study — using X-1O to support 3GPP SBI
* 3GPP SBl is built on top of HTTP/REST APIs

* X-lIO offers equivalent HTTP/REST APIs built on X-1O’s socket interface to support seamless porting
* Remove redundant data copies and protocol parsing

15

16

Evaluation

Experiment Setup

X-1O’s zero-copy interface vs. Linux io_uring (TCP socket, UNIX-domain socket)
2. POSIX-like socket interface performance:
* X-10O’s Read()/Write() vs. Linux Read()/Write() (TCP socket, UNIX-domain socket)

3. HTTP/REST API performance
* X-10’s “xio/http” vs. Golang’s “net/http”

@

etworked
ystems CGroup

[TH RIVERSIDE

Evaluation

X-10’s zero-copy interface vs. Linux io_uring

* A client application and an echo server application
* Placed on the same node
* Both developed in C

* Round-trip latency
» X-IO’s zero copy interface achieves 2.8x~4.| % lower
round-trip latency than io_uring
* Improvement over both TCP socket or UDS
» X-IO’s zero copy interface has constant latency across
various message sizes
* demonstrating the benefit of zero-copy shared memory
communication with X-IO
* 4 packet copies are incurred for every packet round-trip
when using io_uring

17

E2E latency (us)

etworked
% ystems CGroup
[TH RIVERSIDE

L4
:-- lo_uring + TCP

=== |O_Uring + UDS
m—— X0

64 128 256 512 1K 2K 4K 8K
packet size (Bytes)

Evaluation

POSIX-like socket interface performance

* A pair of client and server application
* Placed on the same node
* Both developed in Golang
* Vary the number of concurrent connections (persistent)
* Each connection is allowed to have | in-flight request

(64B)

* Round-trip latency
* X-I1O consistently has lower latency (~1.6x) than TCP
socket

* The latency of X-IO-no-batch is always higher than
default X-1O

* Performing wake-up (unblocking) of multiple
connections in a batch that can amortize the overheads
of interrupts and context switches

18

Ave. latency (us)

9K

6K

3K

etworked
% ystems CGroup
[TH RIVERSIDE

B XIO

B TCP socket
X1 UDS

1 XIO-no-batch

N v % ® V ® o0
C LI NG P A
of conn.

etworked
o ystems CGroup
Evaluation % mRWERSlDE
HTTP/REST API performance

* An HTTP echo server/client pair
* Placed on the same node —t=—X|O
* Both developed in Golang it HTTP
* Vary the number of concurrent HTTP connections (persistent)
* Each connection is allowed to have | in-flight request (64B)

N
o

w
Q@

* HTTP Requests per second
¢ X-lIO achieves 1.4%~2.3% improvement in RPS and latency
* X-lIO avoids extra copies and protocol parsing between socket

interface and HT TP interface
* More scalable than Golang’s HTTP

RPS (1K req/s)
N
Q@

=
2

O ! ! ! I |] T T T T
A2 A % 40 32 6h42D)50cn2
of conn.

19

. ysteetrvr:so l‘kreodup
Conclusion [T RIVERSIDE

X-10 is a high-performance, unified 1/O interface designed for cloud-native microservices

20

e X-10 stack

* A shared memory based network stack with lock-free producer/consumer rings

* Raw I/O primitives exposed by X-1O stack

e Zero-copy data transmission

* Superior performance: 2.8x~4.| % lower latency over both TCP socket or UDS

* POSIX-like primitives abstracted by X-10 lib

* Seamless porting of applications that use POSIX-like socket interface
* Multiple user session support
* Outperform Linux TCP/IP socket interface: |1.6x improvement

* Competitive performance compared to Linux UNIX-domain socket interface

« HTTP/REST APIs abstracted by X-10 lib

* Seamless porting of applications that use HTTP/REST APIs
* 1.4%x~2.3% improvement in RPS and latency compared to Golang’s HTTP/REST APIs

w Find X-10 at: https://github.com/nycu-ucr/xio.git

https://github.com/nycu-ucr/xio.git

21

X-10 is Available

w Find X-10 at: https://github.com/nycu-ucr/xio.git

@

etworked
ystems CGroup

[TH RIVERSIDE

https://github.com/nycu-ucr/xio.git

