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Serverless Computing
What is Serverless computing?

• Paradigm for development and deployment of cloud applications to ease burden on users
• Function as a service (FaaS): Users only provide application function code
• Remove need for traditional always-on server components
• Provisioning and managing the infrastructure becomes the cloud providers’ job

ØReduce user cost and complexity, and greatly improve service scalability and availability

• Challenges with serverless computing
• Less focus on optimizing for high-performance, resource-efficiency, or being responsive
• Need better support for both low latency processing and low resource consumption

SPRIGHT: achieve high-performance, resource-efficient serverless function chains through
shared memory and event-driven processing
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Serverless Computing
An abstract functional view of a serverless cloud:
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Auditing the Overheads of Serverless Computing (1)
Processing involved in a typical serverless function chain setup: network protocol, copies, 
interrupts, context switches etc. abound
Ingress gateway: Intercept external requests;  TLS Termination, authentication, etc
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Auditing the Overheads of Serverless Computing (2)
Broker/front-end: an intermediate component for coordinating invocations within the function chain
Broker: 1 copy, 1 context switches, 2 interrupts, 1 protocol processing, and 1 deserialization
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Auditing the Overheads of Serverless Computing (3)
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Auditing the Overheads of Serverless Computing (4)
Total: 4 copies, 4 context switches, 6 interrupts, 3 protocol processing, 2 serializations, and 2 deserializations
Sidecar: 2 copies, 2 context switches, 2 interrupts, 1 protocol processing, 1 serialization, and 1 deserialization

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel 
protocol 
stack

veth-pair

Ingress 
gateway 

container

kernel 
protocol 
stack

veth-pair

Function-1’s Pod

user 
container

sidecar 
proxy

kernel protocol 
stack

veth-pair

Function-2’s Pod

user 
container

sidecar 
proxy

kernel protocol 
stack

veth-pair

U
serspace

Kernel space

Data Pipeline 
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

# of copies 3

# of ctxt
switches

3

# of irqs 7

# of proto. 
processing

3

# of 
serialization

2

# of 
deserialization

1

④ function-1’s pod ⇒ Broker/front-end

External client



8

Auditing the Overheads of Serverless Computing (5)
Total: 4 copies, 4 context switches, 6 interrupts, 3 protocol processing, 2 serializations, and 2 deserializations
Sidecar: 2 copies, 2 context switches, 2 interrupts, 1 protocol processing, 1 serialization, and 1 deserialization
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Auditing the Overheads of Serverless Computing
Key takeaways: Excessive overhead within the function chain

Takeaway#1: Excessive data copies, context switches, 
and interrupts.

Takeaway#2: Excessive, duplicate protocol processing 
for communication within the function chain

Takeaway#3: Unnecessary serialization/deserialization.

Takeaway#4: Individual, constantly-running components.
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What is SPRIGHT?
eBPF-based event-driven capability + Shared memory processing

Optimization#1: Event-driven proxy

Optimization#2: Shared memory processing

Optimization#3: Direct Function Routing (DFR)
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SPRIGHT: Lightweight Serverless Function Chains
Optimization#1: eBPF-based Event-driven proxy (EPROXY and SPROXY) 

• In-kernel eBPF-based “sidecar”
• EPROXY: @Veth of SPRIGHT GW pod

• Monitoring; iptables acceleration
• SPROXY: Sidecar being injected at the socket level

• Monitoring; Security; Routing

• Purely event-driven
• No CPU overhead when there are no requests

• All in the kernel
• Avoid extra user-kernel boundary crossings
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SPRIGHT: Lightweight Serverless Function Chains
Optimization#2: Shared memory processing

• How to handle protocol processing?
• SPRIGHT Gateway: Entry-point of a function chain

• Consolidate kernel protocol processing
• Move payload into shared memory
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SPRIGHT: Lightweight Serverless Function Chains
Optimization#2: Shared memory processing

• How to handle protocol processing?
• SPRIGHT Gateway: Entry-point of a function chain

• Consolidate kernel protocol processing
• Move payload into shared memory

• Shared memory based data sharing between functions
• NO copy, protocol processing, serialization, …
• Packet descriptor delivery: eBPF’s socket message 

• reside in Event-driven proxy (SPROXY)
• Socket-to-socket data transfer; Routing using eBPF’s

socket map
• Strictly load-proportional compared to polling-based

packet descriptor delivery (DPDK RTE Ring)
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SPRIGHT: Lightweight Serverless Function Chains
Optimization#3: Direct Function Routing

• Having the broker/front-end perform invocations 
between functions is unnecessary
• Routing overhead

• DFR optimizes invocations within a function chain
• The upstream function in the chain directly invokes the 

downstream function: bypass the gateway
• DFR rules in eBPF’s socket map 

• DFR can reduce end-to-end latency of the function 
chain and improve the scalability
• Eliminate an extra hop on the datapath
• Benefit increases as the chain scales

User
space
Kernel
space

Shared memory

SPRIGHT gateway pod

eBPF
maps

Fn-2’s podFn-1’s pod

veth
TX

RX

EPROXY

User 
container

socket
SPROXY

Shared memory access

User 
container

socket
SPROXY

SPRIGHT gateway 
container

socket
SPROXY

socket mapmetrics map

Descriptor 
delivery

Sockmap
lookup



15

Overhead auditing: Knative vs. SPRIGHT

• 0 data copies, 0 protocol processing, 0 serialization/deserialization overheads within the chain

The event-based shared memory processing brings substantial reduction of 
overheads for communication within the serverless function chain
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Evaluation: across multiple serverless workloads
(a) Online boutique
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1. Online Boutique from Google [1]
• Intense web traffic
• 10 functions
• 6 different sequences of function chains

2. Motion detection [2]
• Intermittent IoT traffic (a burst every few seconds)
• 2 simple functions

3. Parking: image detection & charging [3]
• Intermittent & Periodic IoT traffic (once every 240

seconds)
• 5 functions with heterogeneous CPU service time for 

each (from 1ms to 435ms)

[1] https://github.com/GoogleCloudPlatform/microservices-demo 
[2] http://www.merl.com/wmd 
[3] http://cnrpark.it/

https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
http://www.merl.com/wmd%20%5b3
http://www.merl.com/wmd%20%5b3
http://cnrpark.it/
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Performance with Online Boutique
S-SPRIGHT vs. D-SPRIGHT vs. Knative mode vs. gRPC mode (no sidecar)

Throughput:
• Both D- and S-SPRIGHT maintain a stable RPS of 
∼5500 req/sec è (6× more than Knative)

• Without sidecar and front-end proxy, gRPC is slightly 
better than Knative, but its throughput is much lower 
than SPRIGHT (5x lower)

Latency:

• Knative shows clear overload behavior: high tail latency

• SPRIGHT’s shared memory processing reduces 
communication overhead within function chains, 
achieving lower latency than Knative and gRPC, even at 
much higher traffic load

Note: for simplicity, we only show the latency results of a representative 
function chain in online boutique. More results can be found in the paper.
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Performance with Online Boutique
S-SPRIGHT vs. D-SPRIGHT vs. Knative mode vs. gRPC mode (no sidecar)

Resource efficiency:

• entire Knative setup (including the gateway and queue proxies, which are constantly running): ~26 
CPU cores (out of 40)

• Entire gRPC setup (only functions, no gateway and sidecars): ~36 CPU cores (out of 40)

• D-SPRIGHT consumes 11 cores (one core for Gateway, 10 cores for functions)

• S-SPRIGHT consumes in total only ∼3 CPU cores
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Performance with Online Boutique
S-SPRIGHT vs. D-SPRIGHT vs. Knative mode vs. gRPC mode (no sidecar)

Resource efficiency:

• entire Knative setup (including the gateway and queue proxies, which are constantly running): ~26 
CPU cores (out of 40)

• Entire gRPC setup (only functions, no gateway and sidecars): ~36 CPU cores (out of 40)

• D-SPRIGHT consumes 11 cores (one core for Gateway, 10 cores for functions)

• S-SPRIGHT consumes in total only ∼3 CPU cores
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The event-driven socket message mechanism 
makes our design’s shared memory processing 

more resource-efficient
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Evaluation: across multiple serverless workloads
1. Online Boutique from Google [1]
• Intense web traffic
• 10 functions
• 6 different sequences of function chains

2. Motion detection [2]
• Intermittent IoT traffic (a burst every few 

seconds)
• 2 simple functions

3. Parking: image detection & charging [3]
• Intermittent & Periodic IoT traffic (once every 

240 seconds)
• 5 functions with heterogeneous CPU service 

time for each (from 1ms to 435ms)

[1] https://github.com/GoogleCloudPlatform/microservices-demo 
[2] http://www.merl.com/wmd 
[3] http://cnrpark.it/

Our event-driven design sidesteps the need for cold 
start by keeping functions warm at minimum cost

Our design’s event-driven features make it more 
efficient even if we keep functions warm compared 
to ‘pre-warming’ Knative functions

https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
http://www.merl.com/wmd%20%5b3
http://www.merl.com/wmd%20%5b3
http://cnrpark.it/
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Shared memory considered harmful?
Our Solution: Security domain

• Trust model: functions within a chain trust each other, functions in different chains may not

• SPRIGHT constructs a security domain for each function chain with:
• a private shared memory pool for each chain

• DPDK’s multi-process support
• Use different shared data file prefix to separate memory pool

• inter-function packet descriptor filtering with the SPROXY
• Use SPROXY to construct packet descriptor filtering between functions
• Restrict unauthorized access to the shared memory
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Conclusion

SPRIGHT: event-driven + shared memory processing = load-proportional, high-performance

• When serving an intense web workload (online boutique):
• 6x throughput improvement, 70x tail latency reduction and 30x CPU usage savings over Knative

• When serving intermittent IoT workload (motion detection; parking):
• Better than Knative even with ‘pre-warmed’ functions; side-stepping the ‘cold-start’

Using shared memory processing to optimize the data pipeline of current serverless function chains

Using event-driven processing to improve resource efficiency of current serverless function design

Find SPRIGHT at: https://github.com/ucr-serverless/spright

https://github.com/ucr-serverless/spright

