
SPRIGHT:
Extracting the Server from Serverless Computing!

High-performance eBPF-based Event-driven,
Shared-memory Processing

Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, K. K. Ramakrishnan
University of California, Riverside

Visit us at: https://kknetsyslab.cs.ucr.edu/

https://kknetsyslab.cs.ucr.edu/

2

Serverless Computing
What is Serverless computing?

• Paradigm for development and deployment of cloud applications to ease burden on users
• Function as a service (FaaS): Users only provide application function code
• Remove need for traditional always-on server components
• Provisioning and managing the infrastructure becomes the cloud providers’ job

ØReduce user cost and complexity, and greatly improve service scalability and availability

• Challenges with serverless computing
• Less focus on optimizing for high-performance, resource-efficiency, or being responsive
• Need better support for both low latency processing and low resource consumption

SPRIGHT: achieve high-performance, resource-efficient serverless function chains through
shared memory and event-driven processing

3

Serverless Computing
An abstract functional view of a serverless cloud:

Data plane

Control plane

Ingress
gateway

Metric
Server

Function podsFunction pods

Sidecar
proxy

User
container

AutoscalerPlacement
engine

Message Broker/
Front-end proxyRequests

Function
chaining

Execute
functions

Find a node for
placing a function

Scale functions
based on load

Provide metrics for
control plane activities

Metrics collection,
queuing, …

TLS termination;
auth.; …

4

Auditing the Overheads of Serverless Computing (1)
Processing involved in a typical serverless function chain setup: network protocol, copies,
interrupts, context switches etc. abound
Ingress gateway: Intercept external requests; TLS Termination, authentication, etc

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

U
serspace

Kernel space

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies

of ctxt
switches

of irqs

of proto.
processing

of
serialization

of
deserialization

①

irq

proto.

ctx sw

copydeser.

irq

irq

External client ⇒ Ingress gateway

External client

5

Auditing the Overheads of Serverless Computing (2)
Broker/front-end: an intermediate component for coordinating invocations within the function chain
Broker: 1 copy, 1 context switches, 2 interrupts, 1 protocol processing, and 1 deserialization

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

U
serspace

Kernel space

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3

of ctxt
switches

3

of irqs 7

of proto.
processing

3

of
serialization

2

of
deserialization

1

②

copy copy
cxt sw cxt swirq irqproto.

proto.

ser. deser.

irq irq

Ingress gateway ⇒ Broker/front-end

External client

6

Auditing the Overheads of Serverless Computing (3)

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

U
serspace

Kernel space

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3

of ctxt
switches

3

of irqs 7

of proto.
processing

3

of
serialization

2

of
deserialization

1

③ Broker/front-end ⇒ function-1’s pod

copycopycopycopy
ctx sw

irq

ser.

proto. proto. proto.

irq irq

irqirqirq

ctx sw

ctx sw
ctx sw

ser.
deser.

deser.

Total: 4 copies, 4 context switches, 6 interrupts, 3 protocol processing, 2 serializations, and 2 deserializations
Sidecar: 2 copies, 2 context switches, 2 interrupts, 1 protocol processing, 1 serialization, and 1 deserialization

External client

7

Auditing the Overheads of Serverless Computing (4)
Total: 4 copies, 4 context switches, 6 interrupts, 3 protocol processing, 2 serializations, and 2 deserializations
Sidecar: 2 copies, 2 context switches, 2 interrupts, 1 protocol processing, 1 serialization, and 1 deserialization

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

U
serspace

Kernel space

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3

of ctxt
switches

3

of irqs 7

of proto.
processing

3

of
serialization

2

of
deserialization

1

④ function-1’s pod ⇒ Broker/front-end

External client

8

Auditing the Overheads of Serverless Computing (5)
Total: 4 copies, 4 context switches, 6 interrupts, 3 protocol processing, 2 serializations, and 2 deserializations
Sidecar: 2 copies, 2 context switches, 2 interrupts, 1 protocol processing, 1 serialization, and 1 deserialization

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

U
serspace

Kernel space

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3 12 15

of ctxt
switches

3 12 15

of irqs 7 18 25

of proto.
processing

3 9 12

of
serialization

2 6 8

of
deserialization

1 6 7

⑤ Broker/front-end ⇒ function-2’s pod

*Processing in function chain complete;
return a response

External client

9

Auditing the Overheads of Serverless Computing
Key takeaways: Excessive overhead within the function chain

Takeaway#1: Excessive data copies, context switches,
and interrupts.

Takeaway#2: Excessive, duplicate protocol processing
for communication within the function chain

Takeaway#3: Unnecessary serialization/deserialization.

Takeaway#4: Individual, constantly-running components.

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3 12 15

of ctxt
switches

3 12 15

of irqs 7 18 25

of proto.
processing

3 9 12

of
serialization

2 6 8

of
deserialization

1 6 7

10

What is SPRIGHT?
eBPF-based event-driven capability + Shared memory processing

Optimization#1: Event-driven proxy

Optimization#2: Shared memory processing

Optimization#3: Direct Function Routing (DFR)

Worker node
control

plane

data
plane

Master node

SPRIGHT controller

Metric
ServerAutoscaler

Ingress
Gateway

Function 1

User
container

Metric
flow

Descriptor
flow

Packet
flow

eBPF program

function
chain config.

 SPRIGHT gateway

Function 2

User
container

Function 3

User
container

 Shared memory

Control
flow

EPROXY

SPROXY SPROXY SPROXY

Routing table

Shared mem. manager kubelet

apiserver

External
requests

userReplacing individual, constantly-running sidecar

Reduce data movement overhead

Simplify inter-function invocations

11

SPRIGHT: Lightweight Serverless Function Chains
Optimization#1: eBPF-based Event-driven proxy (EPROXY and SPROXY)

• In-kernel eBPF-based “sidecar”
• EPROXY: @Veth of SPRIGHT GW pod

• Monitoring; iptables acceleration
• SPROXY: Sidecar being injected at the socket level

• Monitoring; Security; Routing

• Purely event-driven
• No CPU overhead when there are no requests

• All in the kernel
• Avoid extra user-kernel boundary crossings

User
space
Kernel
space

Shared memory

SPRIGHT gateway pod

eBPF
maps

Fn-2’s podFn-1’s pod

veth
TX

RX

EPROXY

User
container

socket
SPROXY

Shared memory access

User
container

socket
SPROXY

SPRIGHT gateway
container

socket
SPROXY

socket mapmetrics map

Descriptor
delivery

Descriptor
delivery

12

SPRIGHT: Lightweight Serverless Function Chains
Optimization#2: Shared memory processing

• How to handle protocol processing?
• SPRIGHT Gateway: Entry-point of a function chain

• Consolidate kernel protocol processing
• Move payload into shared memory

User
space
Kernel
space

Shared memory

SPRIGHT gateway pod

eBPF
maps

Fn-2’s podFn-1’s pod

veth
TX

RX

EPROXY

User
container

socket
SPROXY

Shared memory access

User
container

socket
SPROXY

SPRIGHT gateway
container

socket
SPROXY

socket mapmetrics map

Descriptor
delivery

Descriptor
delivery

13

SPRIGHT: Lightweight Serverless Function Chains
Optimization#2: Shared memory processing

• How to handle protocol processing?
• SPRIGHT Gateway: Entry-point of a function chain

• Consolidate kernel protocol processing
• Move payload into shared memory

• Shared memory based data sharing between functions
• NO copy, protocol processing, serialization, …
• Packet descriptor delivery: eBPF’s socket message

• reside in Event-driven proxy (SPROXY)
• Socket-to-socket data transfer; Routing using eBPF’s

socket map
• Strictly load-proportional compared to polling-based

packet descriptor delivery (DPDK RTE Ring)

User
space
Kernel
space

Shared memory

SPRIGHT gateway pod

eBPF
maps

Fn-2’s podFn-1’s pod

veth
TX

RX

EPROXY

User
container

socket
SPROXY

Shared memory access

User
container

socket
SPROXY

SPRIGHT gateway
container

socket
SPROXY

socket mapmetrics map

Descriptor
delivery

Descriptor
delivery

14

SPRIGHT: Lightweight Serverless Function Chains
Optimization#3: Direct Function Routing

• Having the broker/front-end perform invocations
between functions is unnecessary
• Routing overhead

• DFR optimizes invocations within a function chain
• The upstream function in the chain directly invokes the

downstream function: bypass the gateway
• DFR rules in eBPF’s socket map

• DFR can reduce end-to-end latency of the function
chain and improve the scalability
• Eliminate an extra hop on the datapath
• Benefit increases as the chain scales

User
space
Kernel
space

Shared memory

SPRIGHT gateway pod

eBPF
maps

Fn-2’s podFn-1’s pod

veth
TX

RX

EPROXY

User
container

socket
SPROXY

Shared memory access

User
container

socket
SPROXY

SPRIGHT gateway
container

socket
SPROXY

socket mapmetrics map

Descriptor
delivery

Sockmap
lookup

15

Overhead auditing: Knative vs. SPRIGHT

• 0 data copies, 0 protocol processing, 0 serialization/deserialization overheads within the chain

The event-based shared memory processing brings substantial reduction of
overheads for communication within the serverless function chain

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3 12 15

of ctxt
switches

3 12 15

of irqs 7 18 25

of proto.
processing

3 9 12

of
serialization

2 6 8

of
deserialization

1 6 7

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ total

of copies 3 0 3

of ctxt
switches

3 4 7

of irqs 7 4 11

of proto.
processing

3 0 3

of
serialization

2 0 2

of
deserialization

1 0 1

16

Evaluation: across multiple serverless workloads
(a) Online boutique

Email
service

Payment
service

Shipping
service

Currency
service

Checkout
service

Ad service

Catalog
service

Frontend
service

Cart
service

Recommendation
service

in-memory
DB

(b) Motion detection
Actuator
function

Sensor
function

Motion
sensor

Light
actuator

(c) Parking: image detection & charging

Camera

Plate detection
function

Plate search
function

Plate-index
function

persist-metadata
function

Charging
function

1. Online Boutique from Google [1]
• Intense web traffic
• 10 functions
• 6 different sequences of function chains

2. Motion detection [2]
• Intermittent IoT traffic (a burst every few seconds)
• 2 simple functions

3. Parking: image detection & charging [3]
• Intermittent & Periodic IoT traffic (once every 240

seconds)
• 5 functions with heterogeneous CPU service time for

each (from 1ms to 435ms)

[1] https://github.com/GoogleCloudPlatform/microservices-demo
[2] http://www.merl.com/wmd
[3] http://cnrpark.it/

https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
http://www.merl.com/wmd%20%5b3
http://www.merl.com/wmd%20%5b3
http://cnrpark.it/

17

Performance with Online Boutique
S-SPRIGHT vs. D-SPRIGHT vs. Knative mode vs. gRPC mode (no sidecar)

Throughput:
• Both D- and S-SPRIGHT maintain a stable RPS of
∼5500 req/sec è (6× more than Knative)

• Without sidecar and front-end proxy, gRPC is slightly
better than Knative, but its throughput is much lower
than SPRIGHT (5x lower)

Latency:

• Knative shows clear overload behavior: high tail latency

• SPRIGHT’s shared memory processing reduces
communication overhead within function chains,
achieving lower latency than Knative and gRPC, even at
much higher traffic load

Note: for simplicity, we only show the latency results of a representative
function chain in online boutique. More results can be found in the paper.

18

Performance with Online Boutique
S-SPRIGHT vs. D-SPRIGHT vs. Knative mode vs. gRPC mode (no sidecar)

Resource efficiency:

• entire Knative setup (including the gateway and queue proxies, which are constantly running): ~26
CPU cores (out of 40)

• Entire gRPC setup (only functions, no gateway and sidecars): ~36 CPU cores (out of 40)

• D-SPRIGHT consumes 11 cores (one core for Gateway, 10 cores for functions)

• S-SPRIGHT consumes in total only ∼3 CPU cores

0 25 50 75 100 125 150
(K) tiPestaPp (secRnd)

0

1K

2K

3K

4K

C3
U
us
ag
e
(%
) g53C fn

0 25 50 75 100 125 150
(g) WiPesWaPp (seconG)

0

1K

2K

3K

4K
C3
U
us
ag
e
(%
) Kn fn

Kn GW
Kn queue

0 25 50 75 100 125 150
(i) WiPHsWDPS (sHcRnG)

0

200

400

600

800

1k

CP
8
us
Dg
H
(%
)

D-6P5IGH7 In
D-6P5IGH7 GW
6-6P5IGH7 In
6-6P5IGH7 GW

19

Performance with Online Boutique
S-SPRIGHT vs. D-SPRIGHT vs. Knative mode vs. gRPC mode (no sidecar)

Resource efficiency:

• entire Knative setup (including the gateway and queue proxies, which are constantly running): ~26
CPU cores (out of 40)

• Entire gRPC setup (only functions, no gateway and sidecars): ~36 CPU cores (out of 40)

• D-SPRIGHT consumes 11 cores (one core for Gateway, 10 cores for functions)

• S-SPRIGHT consumes in total only ∼3 CPU cores

0 25 50 75 100 125 150
(K) tiPestaPp (secRnd)

0

1K

2K

3K

4K

C3
U
us
ag
e
(%
) g53C fn

0 25 50 75 100 125 150
(g) WiPesWaPp (seconG)

0

1K

2K

3K

4K
C3
U
us
ag
e
(%
) Kn fn

Kn GW
Kn queue

0 25 50 75 100 125 150
(i) WiPHsWDPS (sHcRnG)

0

200

400

600

800

1k

CP
8
us
Dg
H
(%
)

D-6P5IGH7 In
D-6P5IGH7 GW
6-6P5IGH7 In
6-6P5IGH7 GW

The event-driven socket message mechanism
makes our design’s shared memory processing

more resource-efficient

20

Evaluation: across multiple serverless workloads
1. Online Boutique from Google [1]
• Intense web traffic
• 10 functions
• 6 different sequences of function chains

2. Motion detection [2]
• Intermittent IoT traffic (a burst every few

seconds)
• 2 simple functions

3. Parking: image detection & charging [3]
• Intermittent & Periodic IoT traffic (once every

240 seconds)
• 5 functions with heterogeneous CPU service

time for each (from 1ms to 435ms)

[1] https://github.com/GoogleCloudPlatform/microservices-demo
[2] http://www.merl.com/wmd
[3] http://cnrpark.it/

Our event-driven design sidesteps the need for cold
start by keeping functions warm at minimum cost

Our design’s event-driven features make it more
efficient even if we keep functions warm compared
to ‘pre-warming’ Knative functions

https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
http://www.merl.com/wmd%20%5b3
http://www.merl.com/wmd%20%5b3
http://cnrpark.it/

21

Shared memory considered harmful?
Our Solution: Security domain

• Trust model: functions within a chain trust each other, functions in different chains may not

• SPRIGHT constructs a security domain for each function chain with:
• a private shared memory pool for each chain

• DPDK’s multi-process support
• Use different shared data file prefix to separate memory pool

• inter-function packet descriptor filtering with the SPROXY
• Use SPROXY to construct packet descriptor filtering between functions
• Restrict unauthorized access to the shared memory

Worker
Node

Security domain of chain #1
Fn 1 Fn 2

SPRIGHT
Gateway #1

Shared Mem. Pool #1

Fn 3
Security domain of chain #2

Fn 1 Fn 2

Shared Mem. Pool #2

Fn 3

SPRIGHT
Gateway #2

Shared mem.
manager

Shared mem.
manager

data path control flow

kubelet

2

1 34

22

Conclusion

SPRIGHT: event-driven + shared memory processing = load-proportional, high-performance

• When serving an intense web workload (online boutique):
• 6x throughput improvement, 70x tail latency reduction and 30x CPU usage savings over Knative

• When serving intermittent IoT workload (motion detection; parking):
• Better than Knative even with ‘pre-warmed’ functions; side-stepping the ‘cold-start’

Using shared memory processing to optimize the data pipeline of current serverless function chains

Using event-driven processing to improve resource efficiency of current serverless function design

Find SPRIGHT at: https://github.com/ucr-serverless/spright

https://github.com/ucr-serverless/spright

