
Towards a Proactive Lightweight Serverless Edge 
Cloud for Internet-of-Things Applications
Ian-Chin Wang, Shixiong Qi, Elizabeth Liri, K. K. Ramakrishnan

University of California, Riverside

October 26th, 2021



Internet-of-Things (IoT)

🤔 limited operational cost

🤔 low latency

Why IoT?
Build smarter world with connected sensors

Features of IoT

😄 traffic management

😄 security

😄 smart home

IoT needs an efficient low-
cost backend to host the 

service on-demand

IoT needs to access 
backends with low latency 

🤔 low power

going to the cloud for 
computation

2



Serverless Edge for IoT Applications

Serverless

Edge Server
🤔 low power

🤔 limited operational cost
😄 seamless scaling

😄 quick provisioning

😄 responsive
Edge Server

Serverless edge cloud is an ideal fit for IoT 
applications

😄 on-demand computation

🤔 low latency

3



How we build up a serverless edge cloud for IoT

o Managing the service can be 
challenging when the number 
of elements increases
o Use sidecar proxies to build up a 

service mesh: decoupled from 
service instances

o Main functions of sidecar proxy
o Control plane: monitoring
o Data plane: routing, load balancing

Service mesh for serverless functions

Service Mesh

Service A

Proxy

Service B

Proxy

Control
Plane Metrics server Manager

OutboundInbound

Data plane

Configuration
metrics

A service mesh is a configurable 
infrastructure layer that handles 
interactions between functions

4



How we build up a serverless edge cloud for IoT

Serverless frameworks are HTTP-oriented

IoT devices adopt lightweight MQTT protocol to reduce bandwidth & save power

Protocol adaptor: MQTT to HTTP

Serverless

HTTP
IoT devices

🤔MQTT-to-HTTP 
adaptor is needed

5



Existing approach and its limitations

Ingress 
gateway

Function pod

Queue proxy

User container

Autoscaler

Building blocks of Serverless Edge Cloud for IoT

6

Function pod

Queue proxy

User container

Function pod

Queue proxy

User container
Function pod

Queue proxy

User container

Service 
Mesh

IoT devices
Protocol adaptor

Broker Metrics server

Scrape 
metrics Scaling decision

Expensive
Constantly 

running

CPU usage

🤔We have to 
really be aware of 
resource usage…



Queue proxy Queue proxyEPROXY EPROXY

Enhancement: Event-driven Interaction via eBPF
Event-driven proxy (EPROXY)

Pod A

Service oriented communication

Event-based 
interaction 

works naturally
with serverless

Event

Pod B

ActioneBPF is the ideal 
capability for 
event-driven 

execution

7



Enhancement: Event-driven Interaction via eBPF
Features of eBPF

execution
o naturally 
o Various points in kernel

o Used for packet processing, packet 
filtering, traffic monitoring

o Userspace-kernel interaction
o eBPF Maps

o Limitations
o run to completion
o limited instructions in a single program

Application

syscall

socket

TCP/IP

ETH

NIC

userspace
kernel

System 
calls

socket

Network 
devices

The eBPF code needs 
to be carefully written 

by the developer

eBPF
map

8



Enhancement: Event-driven Interaction via eBPF
The monitoring service provided by EPROXY

ɡ

User
space

Kernel
space eBPF maps

metrics map

Ingress traffic

Metrics Agent
Function Pod

User Container

Host network stack

veth
(pod)TX RX

Egress traffic

To control plane

Record metrics 
per packet Metrics 

storage

Report metrics 
to control plane 
(for auto-scaler)

Request per second, execution time…

9



MQTT Broker & MQTT-to-HTTP 
Adaptor
o We use Apache Mosquitto as the MQTT broker

o direct the data flow from the IoT sensors to the serverless function chains
o It can be horizontally scaled by Kubernetes based on traffic rate

o We use Apache Camel middleware as adaptor
o Support MQTT based event message to be processed in HTTP based microservice chains
o Send the converted message to function pod directly

10



Overall evaluation
Experiment setup
Cluster setup

2 nodes connected by 25 Gbps link

Two Protocol models:
HTTP vs. MQTT

Two different sidecar proxies
Queue proxy vs. Eproxy

25 GbpsWorkload 
generator

IoT 
environment

Request per second 
is maintained ~1K

11



CPU overhead breakdown

Components User container Queue proxy Adaptor Broker Other Total
HTTP-QPROXY 6.53 7.07 NULL NULL 1.50 15.1
HTTP-EPROXY 6.07 NULL NULL NULL 1.92 7.99

MQTT-QPROXY 6.59 6.19 1.92 0.83 1.24 16.77
MQTT-EPROXY 5.88 NULL 1.77 0.88 1.45 9.98

7.07

6.19

CPU usage of queue 
proxy is very close to 
the user-container!

Undesirable in a 
resource-constrained 

environment

7.99

9.98

~50% Reduction 
of CPU by using 

EPROXY

1.92 0.83
1.77 0.88

Using MQTT 
introduces slight 
extra overhead

12 *"Other" contains EPROXY consumption



CPU usage and request processing delay
MQTT mode adds extra 

latency compared to 
HTTP mode for both the 

Queue proxy and EPROXY

We use apache benchmark (HTTP traffic) to stress different 
configured systems to compare performance

The CPU usage reduction with the EPROXY can help 
considerably at higher loads when the queue proxy will become 
a bottleneck and start contributing an increasing amount of 
queue delay Extra delay 

introduced by 
adaptor, broker  

13



A desirable serverless edge environment for IoT applications

eBPF makes serverless lightweight: fits with resource constrained edge cloud

✅ eBPF perfectly matches Serverless application

Conclusion & Future/in-progress work

eBPF is naturally capable of event-driven execution

Serverless naturally supports event-driven interaction

14

Lightweight eBPF-
based protocol 

adaptor

An eBPF-based 
event-driven 

dataplane

Accurate traffic load 
predictor


