Mu: An Efficient, Fair and Responsive Serverless

Framework for Resource-Constrained Edge Clouds

Viyom Mittal*, Shixiong Qi*, Ratnadeep Bhattacharya*, Xiaosu Lyu*, Junfeng Li$, Sameer
G Kulkarnit, Dan Lis, Jinho Hwang*, K. K. Ramakrishnan*, Timothy Wood*
*University of California, Riverside, *George Washington University, $Tsinghua University,
fIndian Institute of Technology, Gandhinagar, *Facebook Inc.

November 15t, 2021
f [T RIVERSIDE

Serverless Cloud

® @ infinitely scalable cloud

Current designs of serverless |

yet a viable option for Edge

Closer to the
end users

[T9 RIVERSIDE

Challenges to Using Existing Approaches in Edge Clouds
Challenge 1: Imprecise Resource Provision
Existing autoscaling design depends on user inputs

tions

Single metric-based au: Missed SLO)
& Insufficie H achieve optimal

autoscaling

Slow resource provision in case of traffic bursts
& Long response time, SLO violations

[T9 RIVERSIDE

/

Challenges to Using Existing,Apprc
Challenge 2: Unfair Functio

es in Edge Clouds

Existin& place Function-1: More ciency
With no resource provisioned
@ Unfaif e and Better SLO

If two functions that e the Same SLO are going to be placed...

Function-2: Less

resource provisioned
and Worse SLO

mRIVERSIDE

Challenges to Using Existing Approaches in Edge Clouds
Challenge 3: Unawareness of Resource Heterogeneity and System Dynamics
& Resource Heterogeneity and System Dynamics can lead to poor load

balancing decision
Least connection LB: Track the queue length at backend pods and

distribute the request to the pod with minimum queue length e e

two pods

|
“Node 1 has poor HW
|

request Leas ~~nnection

o . . Pods on Node 1 needs 10
Existing de5|gn fails - seconds to serve one request

to deal with Fod C needs 35
. to teaponu
dynamics (oo

Loac

New pod D is the best choice
(least response time)

Challenges to Using Existing Approaches in Edge Clouds

Challenge 4: Approximate metrics collection
Serverless platform relies on pod metrics to guide resource management

Existing design relies on approximate metrics collection to address scaling
& an inaccurate view of system status
& negative impact on resource provision, load balancing...

Need a precise, lightweight
and scalable metric

collection mechanism

[T9 RIVERSIDE

Mu: Efficient, Fair and Responsive Serverless Edge Cloud

Building blocks of Mu RPN r e A" [Incoming Rate ‘]
and Dynamics Predictor

Imprecise
gress gateway Resou rce
| Smart Load ::’ Internal | SLO-aware Provision
_Balancer 1 { Metric Server , Autoscaler
Unfair
Function
~
Fuaction pods N a DRE-baced Placement
W (ST TTTTTTN gt oo -base
Approximate Queueproxy ; | User | .
Metrics | container : | container : Placement engine

J g

Collection

[T RIVERSIDE

SLO-aware Autoscaler

Idea:

< From user's perspective, providing SLO is more meaningful rather than
inte +/ 'RPS) v
How.

W sers only provide the target SLO of their function

& Provision resources by factoring in both the incoming request rate and
the queue length

Ensuce SLOs by factoring in the average request execution time

v

[TH RIVERSIDE

Incoming Rate Predictor

Our Goal:
& Provision adequate resource in case of traffic bursts

Idea:
< Mu uses a simple online linear regression model to predict the incoming

rate based on previous observations
< Mu uses multi-armed bandit to improve accuracy

Features:
1. lightweight and fast
2. Accurate prediction - dynamically select the model with minimum error

[T9 RIVERSIDE

Placement Engine

2-stage heuristic algorithm
between serverless functions

- Function selection based on Dominant Resource Fairness (DRF)
between nodes

- Node selection based on scoring
- Alignment [1], WorstFit [2], and BestFit [2].
- reduce the resource fragmentation, minimize unfairness
*Call two stages iteratively until there are no resources left or all functions are placed

1. R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. 2014. Multi-resource packing for cluster schedulers. ACM

SIGCOMM Computer Communication Review 44, 4 (2014), 455-466.
2. C. A. Psomasand, J. Schwartz. Beyond beyond dominant resource fairness: Indivisible resource allocation in clusters. Tech Report
RIVERSIDE

Berkeley, Tech. Rep. (2013).

Load Balancer

Our Goal: @ to be aware of resource heterogeneity and system dynamics
@ use extra metrics to estimate response time of each pod
” © differentiate “fast” and “slow” pods in the system
© use “piggybacked” metrics of each pods instead of “two random choices’
© track system dynamics T

to respond

request Least Connection 0 Pod B needs 20s

Load balancer to respond

\en =
- g len=1,cap=0.1 req/sec

Metric server

Ingress gateway

Pod D needs 4s
to respond

10

Metric collection

Our goal:
- Precise metric collection that can reflect latest system state and achieve good scalability

Precise j ' Heterogeneity }

-

ponse is instantane providing etrics based for the latest state
- Piggybacking also help us accommodate heterogeneity and system dynamics
- Piggybacking eliminates the explicit need of metric collection

response || response
response User
request Load balancer :
container

Me r

Ingress gateway

[T9 RIVERSIDE

11

12

Summary of overall evaluation

Experiment setup

« Three different system configurations

Default Knative with RPS autoscaling (RPS)

Default Knative with Concurrency autoscaling (CC)

« Scaling target is fair among different scaling
policies
« System is slightly overloaded

« Evaluated metrics
« Latency and Fairness
« Pod allocation (efficiency)
« SLO performance

Parameter/Specification | Values
i
. W-1 [141-230 rps
' 1
Invocation Range [W-2 |169-182 1ps
i 2 |
Average invocations | W-1 : 154 rps
| W-2 || 146 1ps
Container Concurrency | 4
Grace Flag (Mu only) 16
Execution time 500ms
Maximum pod capacity 48
CPU and Mem. per pod 7 cores, 30GB
RPS 8
Target CC 10
SLO 5 seconds
[T9 RIVERSIDE

13

Latency and Fairness

Response time CDF for Mu and standard Knative approaches (CC and RPS)

Mu has good control over response time
- Mu limits the tail latency with SLO of 5 seconds

for both workloads
- Standard Knative approaches result in much

larger response time tail

100 _® E
80 ...
N
et
o
=60 ..
o
(]
= 0 ..
5" . .
X
® 50- - Concurrency |
- RPS
— Mu
0 l ; ;
0 5k 10k 15k 20k
response time (ms)
Workload-1

Mu achieves better fairness

Mu treats Workload-1 and Workload-2 equally

- Standard Knative approaches unfairly treat
Workload-2

]
(7))
2 60
(op 0 .
o SLO violations
w40
) : :
X
20 - - Concurrency
— RPS
— Mu
0 ; : :
0 5k 10k 15k 20k
response time (ms) m RIVERSIDE
Workload-2

Latency and Fairness

Time series of Response Time for Mu and standard Knative approaches

® RPS Successful Responses @ CC Successful Responses ® Mu Successful Responses
15000

12000 /“\
9000

60001 \ = - , -*
¥ RPS and CCresultina 0 : - , i

® Mu Error Responses

s KRR
X-Th -]
S AT h Rt
2|7 TR

=TT yemR large number of requests
| experiencing high delays 500 =

Mu has 503 errors at the start of the econd) Mu maintains
when the burst workload fairness between the

arrives at the workloads for the
beginning entire length of the
experiment

w
o
o
o

Response time (ms)

1300 1400

Response

0 100 200 300 400 500 600 700 800 900 1000
Timestamp (second)

11i00 12i00 13;00 1400
14

Z-PEOIOMN L-PEO|}IOAN

15

SLO Performance

Mu: Correlation between 503 errors and occurrence of bursts

Most of the 503 errors occur when the burst arrives at the beginning (see first 200 seconds)
- When the predictor has not yet learned the characteristics of the workload

- The system takes a certain amount of time to provision pods

503 errors of Mu
correlate with the burst
at first 200 second

|-peo]

st 200s times series of response time*

Z-PEOoIOM

16

SLO Performance Summary

Mu achieves better SLO than standard Knative approaches

- 96.8% requests served within SLO compared to RPS (86.2%) and CC (84.2%)

Mu uses SLO-aware admission control and returns 503 errors

- This avoids the build up of a large queue with the arrival of a burst of requests

- RPS and CC choose to buffer the burst of requests -> SLO violation

503 errors result in limited negative impact and bring more SLO benefit compared to a large
queue

- Better SLO performance

_ Low tail latency 503 errors returned by Mu

impacts relatively small -
503 error /total : Requests served
number (<5%) of requests, / Sk N

A requests : within SLO

CC and RPS build up a large 25-30% of total requests

queue resulting in very long failed to meet SLO
latencies

Workload-2 0/ 209905 : 5.5%
Workload-1 2141 0/220126 : 99.6%

Concurrency I
Workload-2 49526 0/ 209905 I 68.0%

=

Pod Allocation

Time series of Pod counts for Mu and standard Knative approaches

Mu uses less pods than standard Knative approaches
- On average RPS and Concurrency use 18% and 17% more pods than Mu

Mu tends to request fewer pods since its goal is to meet SLOs, not necessarily minimize
response times, and its predictor helps it judge the workload.

Requested pod count

W1 Requested =+ W1 Active decided by CC and RPS s 1 Requested
301 ——— W2 Requested =+ W2 Active unattainable and unfair 2 Requested
30- r[{"ﬂ W1 Active
] i = W2 Active
o |FE === \:\ﬁl « 100
L O | r ——————————————————— ! o 1
|20 e " Max
|O i1l O
|4 || # 50 fr=mm=mmmmmm e m e e pod_
| — W2 Requested | 25 . T~ (48)
. . , — - W1 Active |] \
Mu fairly decides the 1N — W2 Active : 0 \
requested pod count 00 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250
based on the resource ds) Timestamp (seconds) Timestamp (seconds)

availability.

RPS-based Knative Concurrency-based Knative

Conclusion

Mu achieves better

latency performance

An Efficient, Fair

resource fairness and Responsive
Serverless
o) Framework for
resource efficiency Resource-
Constrained
SLO performance Edge Clouds

compared to Knative

[T9 RIVERSIDE

