
Mu: An Efficient, Fair and Responsive Serverless 

Framework for Resource-Constrained Edge Clouds
Viyom Mittal∗, Shixiong Qi∗, Ratnadeep Bhattacharya+, Xiaosu Lyu+, Junfeng Li§, Sameer 

G Kulkarni†, Dan Li§, Jinho Hwang★, K. K. Ramakrishnan∗, Timothy Wood+
∗University of California, Riverside, +George Washington University, §Tsinghua University, 

†Indian Institute of Technology, Gandhinagar, ★Facebook Inc.
November 1st, 2021



Serverless Cloud

1

Edge Server

😄 seamless scaling

😄 quick provisioning

Closer to the 
end users

🤔 infinitely scalable cloud

🤔 resource wastage

🙁 resource constrained

Current designs of serverless platforms are not 
yet a viable option for Edge environments



Challenges to Using Existing Approaches in Edge Clouds 
Challenge 1: Imprecise Resource Provision
Existing autoscaling design depends on user inputs 

🙁 Users are unaware of runtime features of functions
🙁 Inappropriate parameter configurations

Single metric-based autoscaling (RPS, Concurrency)
🙁 Insufficient and not comprehensive enough to achieve optimal 

autoscaling

Slow resource provision in case of traffic bursts 
🙁 Long response time, SLO violations

Missed SLO

2



Challenges to Using Existing Approaches in Edge Clouds 
Challenge 2: Unfair Function Placement
Existing placement engine design focuses on resource efficiency

🙁With no consideration of fairness between functions
🙁 Unfair resource provision between functions

🤔 If two functions that have the same SLO are going to be placed…

Function-1: More 
resource provisioned 

and Better SLO

Function-2: Less 
resource provisioned 

and Worse SLO

3



Node 2

Node 1

Challenges to Using Existing Approaches in Edge Clouds 
Challenge 3: Unawareness of Resource Heterogeneity and System Dynamics
🙁 Resource Heterogeneity and System Dynamics can lead to poor load 
balancing decision

Least connection LB: Track the queue length at backend pods and 
distribute the request to the pod with minimum queue length

Ingress gateway

Least Connection 
Load balancer

Metric server

Pod A

Pod C

q_len = 0

q_len = 2

Node 1 has poor HW
Pods on Node 1 needs 10 
seconds to serve one request 
(More response delay)

Node 2 has good HW
Pods on Node 2 needs 1 
seconds to serve one request 
(Less response delay)

Pod Arequest

Pod C

Pod A needs 10s 
to respond

Pod C needs 3s 
to respond

Existing design fails 
to deal with 

heterogeneity

4

Ingress gateway

Least Connection 
Load balancer

Metric server

Pod A

Pod B

Pod C

Pod D

q_len = 7

q_len = 3

q_len = 4

q_len = 0

ExisBng design fails 
to deal with 

dynamics

* Assume all the pods 
are homogeneous * 

randomly selects 
two pods 

Pod Arequest

New pod D is the best choice 
(least response time)



Challenges to Using Existing Approaches in Edge Clouds 
Challenge 4: Approximate metrics collection
Serverless platform relies on pod metrics to guide resource management

Existing design relies on approximate metrics collection to address scaling
🙁 an inaccurate view of system status
🙁 negative impact on resource provision, load balancing...

Need a precise, lightweight 
and scalable metric 

collecBon mechanism

5



Function pods

Mu: Efficient, Fair and Responsive Serverless Edge Cloud

Ingress gateway

Smart Load 
Balancer

Internal 
Metric Server

FuncMon pods

Queue proxy 
container

User 
container

SLO-aware 
Autoscaler

DRF-based 
Placement engine

Incoming Rate 
Predictor

Building blocks of Mu

Imprecise 
Resource 
Provision

Imprecise 
Resource 
Provision

Unfair 
FuncBon 

Placement

Heterogeneity 
and Dynamics

Approximate 
Metrics 

Collection

6



SLO-aware Autoscaler
Idea:

😄 From user's perspective, providing SLO is more meaningful rather than 
internal configurations (Concurrency, RPS)

How:
1⃣ Users only provide the target SLO of their function
2⃣ Provision resources by factoring in both the incoming request rate and 

the queue length 
3⃣ Ensure SLOs by factoring in the average request execution time

✔ExisBng autoscaling design 
depends on user inputs

✔Single metric-based autoscaling 
(RPS, Concurrency)

✔ Avoid over-allocaBon of resources to 
ensure performance with just the right 

amount of resources.
7



Incoming Rate Predictor
Our Goal:

🤔 Provision adequate resource in case of traffic bursts 

Idea:
😄 Mu uses a simple online linear regression model to predict the incoming 

rate based on previous observations
😄 Mu uses multi-armed bandit to improve accuracy

Features:
1. lightweight and fast
2. Accurate prediction - dynamically select the model with minimum error

8



2-stage heuristic algorithm
- Resource fairness between serverless functions

- Function selection based on Dominant Resource Fairness (DRF)
- Resource efficiency between nodes

- Node selection based on scoring
- Alignment [1], WorstFit [2], and BestFit [2].
- reduce the resource fragmentation, minimize unfairness

*Call two stages iteratively until there are no resources left or all functions are placed

Placement Engine

1. R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. 2014. Mul:-resource packing for cluster schedulers. ACM 
SIGCOMM Computer Communica:on Review 44, 4 (2014), 455–466. 
2. C. A. Psomasand, J. Schwartz. Beyond beyond dominant resource fairness: Indivisible resource alloca:on in clusters. Tech Report 
Berkeley, Tech. Rep. (2013). 

Consider fairness and 
efficiency together

9



Load Balancer
Our Goal: 🤔 to be aware of resource heterogeneity and system dynamics

😄 use extra metrics to estimate response time of each pod
😄 differentiate “fast” and “slow” pods in the system

😄 use “piggybacked” metrics of each pods instead of “two random choices”
😄 track system dynamics

Node 2

Node 1Ingress gateway

Least ConnecMon 
Load balancer

Metric server

Pod A

Pod C

Node 1 has poor HW
Pods on Node 1 needs 10 
seconds to serve one request 
(More response delay)

Node 2 has good HW
Pods on Node 2 needs 1 
seconds to serve one request 
(Less response delay)

Pod A needs 10s 
to respond

Pod C needs 3s 
to respond

Pod C

Pod B
q_len = 0, cap = 0.1 req/sec

q_len = 1, cap = 0.1 req/sec

q_len = 2, cap = 1 req/sec
q_len = 3, cap = 1 req/sec

Pod B needs 20s 
to respond

Pod D needs 4s 
to respond

Pod C

request

10



Metric collection
Our goal:
- Precise metric collection that can reflect latest system state and achieve good scalability

Solution 1 - providing sufficient metrics to support better load balancing and autoscaling
- departure rate, confidence ratio, execution time, queue length
Solution 2 - piggybacking the metrics in each response headers
- The response is instantaneous providing the metrics based for the latest system state
- Piggybacking also help us accommodate heterogeneity and system dynamics
- Piggybacking eliminates the explicit need of metric collection

Ingress gateway

Load balancer

Metric server FuncMon

Queue 
proxy

User 
container

Autoscaler

request

responsemetrics response

metrics

response

Precise Dynamics Heterogeneity Scalable

11



Summary of overall evaluation

• Evaluated metrics
• Latency and Fairness
• Pod allocation (efficiency)
• SLO performance 

• Three different system configurations

• Scaling target is fair among different scaling 
policies

• System is slightly overloaded

Mu Default Knative with RPS autoscaling (RPS)

Default Knative with Concurrency autoscaling (CC)

12

Azure workloads

Experiment setup



Mu has good control over response time
- Mu limits the tail latency with SLO of 5 seconds 

for both workloads
- Standard Knative approaches result in much 

larger response time tail

Latency and Fairness
Response time CDF for Mu and standard Knative approaches (CC and RPS)

Workload-1 Workload-2

Mu achieves better fairness
- Mu treats Workload-1 and Workload-2 equally
- Standard Knative approaches unfairly treat 

Workload-2

SLO violations

13

SLO = 5 sec SLO = 5 sec



Latency and Fairness
Time series of Response Time for Mu and standard Knative approaches 

RPS and CC result in a 
large number of requests 
experiencing high delays 

at the start of the 
workload

RPS and CC result in a 
large number of requests 
experiencing high delays 

at the start of the 
workload

Mu has 503 errors 
when the burst 
arrives at the 

beginning  

Mu has 503 errors 
when the burst 
arrives at the 

beginning  

Mu maintains 
fairness between the 

workloads for the 
entire length of the 

experiment

Mu maintains 
fairness between the 

workloads for the 
entire length of the 

experiment

W
orkload-1

W
orkload-2

● RPS Successful Responses ● CC Successful Responses ● Mu Successful Responses
● Mu Error Responses

14



SLO Performance
Mu: Correlation between 503 errors and occurrence of bursts 
Most of the 503 errors occur when the burst arrives at the beginning (see first 200 seconds)
- When the predictor has not yet learned the characteristics of the workload
- The system takes a certain amount of time to provision pods

Requested
Requested

*Time series of Pod counts for Mu*

*first 200s of Pod counts for Mu*

Requested
Requested
Mu’s predictor is learning at 

first 200 seconds

Pod startup 
latency is 

unavoidable
W

orkload-1
W

orkload-2

*first 200s Kmes series of response Kme*
503 errors of Mu 

correlate with the burst 
at first 200 second

15



99% response time 
(ms)

# 503 error / total 
requests

Requests served 
within SLO

Mu
Workload-1 3805 6779 / 220126 96.5%

Workload-2 4073 5211 / 209905 97.0%

RPS
Workload-1 11757 0 / 220126 96.4%

Workload-2 8808 0 / 209905 75.5%

Concurrency
Workload-1 2141 0 / 220126 99.6%

Workload-2 49526 0 / 209905 68.0%

SLO Performance Summary
Mu achieves better SLO than standard Knative approaches 
- 96.8% requests served within SLO compared to RPS (86.2%) and CC (84.2%)
Mu uses SLO-aware admission control and returns 503 errors
- This avoids the build up of a large queue with the arrival of a burst of requests
- RPS and CC choose to buffer the burst of requests -> SLO violation
503 errors result in limited negative impact and bring more SLO benefit compared to a large 
queue
- Better SLO performance
- Low tail latency 503 errors returned by Mu 

impacts relatively small 
number (<5%) of requests,

CC and RPS build up a large 
queue resulting in very long 

latencies

25-30% of total requests 
failed to meet SLO

16



Mu

Requested
Requested

Pod Allocation
Time series of Pod counts for Mu and standard Knative approaches 

Mu fairly decides the 
requested pod count 

based on the resource 
availability.

Requested pod count 
decided by CC and RPS is 

unattainable and unfair

Mu uses less pods than standard Knative approaches 
- On average RPS and Concurrency use 18% and 17% more pods than Mu
- Mu tends to request fewer pods since its goal is to meet SLOs, not necessarily minimize 

response times, and its predictor helps it judge the workload.

Max 
pod 

capacity
(48)

17 RPS-based Knative Concurrency-based Knative



Conclusion

latency performance01

resource fairness02

resource efficiency03

SLO performance04

An Efficient, Fair 
and Responsive 
Serverless 
Framework for 
Resource-
Constrained 
Edge Clouds

Smart load balancer

DRF-based placement 
engine

Piggybacked metrics

SLO-aware 
Autoscaler

Incoming 
rate predictor

18

Mu achieves better 

compared to Knative


