
L25GC+: An Improved, 3GPP-compliant 5G Core
for Low-latency Control Plane Operations

Yu-Sheng Liu† Shixiong Qi∗ Po-Yi Lin† Han-Sing Tsai†
K. K. Ramakrishnan∗ Jyh-Cheng Chen†

†National Yang Ming Chiao Tung University ∗University of California, Riverside

Visit us at:
https://kknetsyslab.cs.ucr.edu/
https://cslab.cs.nycu.edu.tw/

https://kknetsyslab.cs.ucr.edu/
https://cslab.cs.nycu.edu.tw/

2

Software-based 5GC Control Plane

• 5GC Control Plane NFs coupled together
• Account for task dependencies
• NFs are networked together

• Microservice “chain”
• Example

• UE authentication
• Part of UE registration procedure

• Frequent interaction between AMF, AUSF,
UDM

ØNeed tight coupling to provide low-latency to
complete complex interactions
But:
• Control plane NFs communicate over 3GPP SBI

• Use kernel-based HTTP/REST API

• Increased control plane latency!

5GC Control Plane NFs built as microservices

3

L25GC: the state-of-the-art 5GC control plane

Limitations of existing Shared Memory Processing:
 OpenNetVM[1]

• Stateless, Asynchronous I/O for shared memory
communication

• Caller does not wait for a response from callee
• The caller is not blocked waiting for the request

• Unidirectional data exchange: a send/recv pair
• Was suitable for NFV platform with L2 NFs

• 3GPP SBI requires Synchronous I/O
• Caller expects a response from callee

• Caller waits (blocked) until response is returned
• Bidirectional data exchange: two send/recv pairs

Using Shared Memory Processing to reduce control plane latency

L25GC needs enhancement!

[1] Zhang, Wei, et al. "OpenNetVM: A platform for high performance network service chains." Proceedings of the 2016 workshop on Hot topics in Middleboxes
and Network Function Virtualization. 2016.

Synchronous I/O

Asynchronous I/O

server
thread

client
thread Network

server
thread

client
thread Network

request
recv()send()

request
recv()send()

response
send()recv()

4

L25GC+
An Improved, 3GPP-compliant 5G Core for Low-latency Control Plane Operations

§ Asynchronous I/O over shared memory

§ Unable to scale up concurrent user sessions

§ Programming language incompatibility

§ Synchronous I/O over shared memory

§ Concurrent connection support

§ Cross-language support

L25GC+L25GC (directly based on OpenNetVM)

5

L25GC+: An Improved, 3GPP-compliant 5G Core

• Shared memory I/O stack:
• Shared memory processing with lock-free rings

• Like L25GC, built with OpenNetVM
• Asynchronous I/O only
Ø Retaining a high-performance data plane

• API Libs:
• Synchronous I/O support w/ shared memory

• Combining our efforts on X-IO[1]

Ø Being 3GPP-compliant

• Concurrent connection management:
• Using “User session table”
Ø Scale up to a number of concurrent user sessions

• Cross-language support:
• CGo interface in Golang
Ø Reducing porting effort (from free5GC)

Overview: L25GC+ Unified Sync/Async communication; multiple user sessions

[1] X-IO: A High-performance Unified I/O Interface using Lock-free Shared Memory Processing. 2023 IEEE 9th International Conference on Network Softwarization (NetSoft). IEEE, 2023.

Worker Node (userspace)

Shared memory

NF-1 NF-2

Message
Pool

Worker Node (userspace)

Shared memory

NF-1

I/O stack
Packet
handler

NF
manager

Router
R

T

NF-2

I/O stack
Packet
handlerR

T

Message
Pool

Worker Node (userspace)

Shared memory

NF-1

API Libs

I/O stack
Packet
handler

NF
manager

Router
R

T

Socket APIs

HTTP/REST APIs

3GPP SBI

NF-2

API Libs

I/O stack
Packet
handler

Socket APIs

HTTP/REST APIs

3GPP SBI

R

T

Message
Pool

Worker Node (userspace)

Shared memory

NF-1 user-1’s
thread

API Libs

I/O stack
Packet
handler

NF
manager

RouterUser session
table R

T

user-2’s
thread

Socket APIs

HTTP/REST APIs

3GPP SBI

NF-2user-1’s
thread

API Libs

I/O stack
Packet
handler User session

table

user-2’s
thread

Socket APIs

HTTP/REST APIs

3GPP SBI

R

T

Message
Pool

Worker Node (userspace)

Shared memory

NF-1 user-1’s
thread

API Libs

I/O stack
Packet
handler

NF
manager

RouterUser session
table R

T

user-2’s
thread

Socket APIs

HTTP/REST APIs

3GPP SBI

NF-2user-1’s
thread

API Libs

I/O stack
Packet
handler User session

table

user-2’s
thread

Socket APIs

HTTP/REST APIs

3GPP SBI

R

T

Message
Pool

CGo interface CGo interface

6

L25GC+: An Improved, 3GPP-compliant 5G Core

• A layered design:
• Bottom Layer: POSIX-like socket APIs

• Equivalent Golang-style socket interfaces
• Read(), Write(), Listen(), Accept(), Dial()

• Middle Layer: HTTP/REST APIs
• Top Layer: 3GPP SBI

ØFacilitate ease of implementation
and avoids re-implementing the
entire stack
• Simply replacing the lower-layer socket

APIs

API libs

Golang-based 5G NF

Golang-based API Libs

C-based I/O stack

Socket APIs

HTTP/REST APIs

3GPP SBI

Golang CGo interface

7

L25GC+: An Improved, 3GPP-compliant 5G Core

• We keep the upper layer HTTP/REST APIs and 3GPP SBI unchanged

Supporting seamless porting of applications that depend on the POSIX socket API

import "xio"

/* X-IO-based socket server */
listener, _ := xio.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer)

conn.Close()

/* X-IO-based socket client */
conn, err := xio.Dial(server_address)

send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer)

conn.Close()

import "net"

/* Golang-style socket server */
listener, _ := net.Listen(server_address)
conn, _ := listener.Accept()

receive_buffer := make([]byte, RECV_MSG_SIZE)
n, err := conn.Read(receive_buffer)

conn.Close()

/* Golang-style socket client */
conn, err := net.Dial(server_address)

send_buffer := make([]byte, SEND_MSG_SIZE)
n, err := conn.Write(send_buffer)

conn.Close()

8

L25GC+: An Improved, 3GPP-compliant 5G Core

• Turning “stateless” to “stateful”
• user session table in I/O stack
• Dispatch requests to different user sessions via IP 4-tuples lookup

Concurrent user session support

9

L25GC+: An Improved, 3GPP-compliant 5G Core

• HTTP/REST API optimization [2]
• Connection management [2]
• Establishment; Teardown

• 5GC data plane (UPF) optimization [1]
• 5GC deployment strategy [1]
• 5GC resiliency [1]

Please refer to our previous work: L25GC [1] and X-IO [2]

Additional Features in L25GC+: Leveraging our earlier effort

[1] L25GC: A Low Latency 5G Core Network based on High-performance NFV Platforms. Proceedings of the ACM SIGCOMM 2022 Conference. 2022.
[2] X-IO: A High-performance Unified I/O Interface using Lock-free Shared Memory Processing. 2023 IEEE 9th International Conference on Network Softwarization (NetSoft). IEEE, 2023.

10

Evaluation

• 3GPP-compliant commercial testbed
• UEs: laptops with 5G dongles (from Apal)
• RU: from Alpha Networks Inc.
• CU/DU: from AEWIN Technologies
• UE Registration & PDU Session

Establishment

• Simulated UE/RAN:
• UE & RAN simulator from L25GC
• Scale up more UEs
• Additionally look at Paging event

• We compare L25GC+ with free5GC

Experiment Setup

11

Evaluation

• Verify the improvement of L25GC+ with commercial
testbed
• “CN”: The contributed latency by the 5GC

• UE registration
• L25GC+ has 1.5× lower “CN” latency (Single UE)

and 1.3× lower “CN” latency (5 UEs)

• PDU session establishment
• L25GC+ has 2× lower “CN” latency (Single UE)

and 1.6× lower “CN” latency (5 UEs)

Commercial testbed results

12

Evaluation

• Verify the improvement of L25GC+ with more UEs
• We show the “Total” latency
• X-axis is number of concurrent UEs

• UE registration
• L25GC+ has 1.9× latency reduction

• PDU session establishment
• L25GC+ has 2× latency reduction

• Paging event (idle-to-active transition)
• L25GC+ has 1.6× latency reduction

Results with simulated UE/RAN
UE Registration

PDU session estab.

Paging

� � �

	
�
�

���

	��

��

���

���

��
��
��
��
��
��

����	 �����

�����
�
��

���

���� ���	

��
�

��
�	

�	
�

�������
�	����

� � �

	
�
�

	��

���

��

��
��
��
��
��
��

�� ���
 ����

�����

��	��

���	 ���� ����

�	��

	����

�������
�	����

� � �

	
�
�

	�

��

�

��

��
��
��
��
��
��

����

�	��

�
��

�

����

���
�	��

����

�	�	

���

�������
�	����

13

Conclusion

• Synchronous I/O interface

• 3GPP-compliant

• Concurrent user session support

• More scalable compared to L25GC
• => A shared memory based network stack
• => Up to 2X control plane latency reduction compared to free5GC

• Inter-node communication
• Current using kernel protocol stack; RDMA in the future

• L25GC+ is Available
• ☞ Find L25GC+ at: https://github.com/nycu-ucr/L25GC-plus.git
• If you have any questions or comments, please feel free to email us (l25gc@googlegroups.com)

L25GC+ is an improved, 3GPP-compliant 5GC designed for low-latency control plane operations

https://github.com/nycu-ucr/L25GC-plus.git

Networked
Systems Group

Backup Slides

15

L25GC+: An Improved, 3GPP-compliant 5G Core

• Adding blocking primitives to the asynchronous shared memory network stack
• The caller of Read() is blocked until it receives the request from the I/O stack
• The caller of Write() is blocked until the data in send buffer is moved to the shm buffer
Ø Conditional Variable in OS

• Caller waits until it is signaled to wake up
Ø Batch wake-up mechanism

• A receive queue to buffer the requests (descriptors)
• Reduce wake-up overhead

• Example: How does our Read() & Write() synchronize?

Adding Synchronous I/O

Distinguish blocking call with synchronous I/O

16

L25GC: the state-of-the-art 5GC control plane

• Shared memory for
communication between NFs in
same node
• Built on OpenNetVM[1]

• A high performance NFV platform
based on DPDK

• Information exchanged directly in
userspace: no kernel overheads or
protocol processing
• Zero-copy packet delivery between

NFs: no data movement,
serialization/de-serialization cost

Optimizing the Service Based Interface

Data center/Edge Cloud

DN

Node 1
L25GC’s U2

Node 2
L25GC’s U1

Node 3
L25GC’s U3 L25GC’s U4

Orchestrator

UE-aware load balancer

Control plane

SMFAMF

AUSFNRF UDMPCF

UDRNSSF

Shared memory
interface

L25GC Unit 1

Placement engine

[1] Wei Zhang et al. 2016. OpenNetVM: A Platform for High Performance Network Service Chains. HotMIddlebox '16

17

L25GC: the state-of-the-art 5GC control plane

• The shared memory network stack in L25GC
• Shared Memory Pool
• Lock-free Producer/Consumer Rings with Busy-polling

• Zero-copy I/O primitives from the I/O stack
• io_malloc(), io_tx(), and io_rx()
• Non-blocking, Asynchronous operations only

• Not compatible with 3GPP SBI
• No state keeping

• Unable to track connection state
• Developed in C

• Massive refactoring of free5GC
 (in Golang)

A Quick Primer on ZERO-COPY Shared Memory Processing from L25GC

application application

X-IO stack X-IO stack

Shared memory
application application

X-IO stack X-IO stack

Shared memory
application application

X-IO stack X-IO stackpacket descriptor

Shared memory
application

X-IO stack
R

T

application

X-IO stack
R

T

Shared memory
application

X-IO stack

X-IO
manager

Router
R

T

application

X-IO stack
R

T

Shared memory
application

X-IO stack

X-IO
manager

Router
R

T

application

X-IO stack
R

T
zero-copy api
xio_malloc() xio_tx()

xio_rx() zero-copy api
xio_malloc() xio_tx()

xio_rx()

client

request

server
thread

recv()
client
thread

send()

Network

18

The evolution of softwarized cellular core

• Independently deployable
• Loosely coupled
• Easy to scale out
• Good modularity

Moving from monolithic services to microservices

• All-in-one
• Hard to scale out
• Poor modularity

Monolith LTE EPC Microservices 5GC

19

Challenges for 5G Cellular Core control plane

• Control plane NFs communicate over
3GPP SBI
• Kernel-based HTTP/REST API

• Penalties:
• copies, serialization/deserialization,

protocol processing,

• Increased control plane latency!

3GPP-recommended Service Based Interface (SBI)

Control Plane needs speed and efficiency
improvements too, not just speed up of the
Data Plane

kernel protocol stack

U
ser

space
Kernel
Space

AMF

Socket

SMF

Socket

NRF

Socket

…

Replace figure

