
Z-stack: A High-performance DPDK-based
Zero-copy TCP/IP Protocol Stack

Anvaya B. Narappa∗, Federico Parola†, Shixiong Qi∗, K. K. Ramakrishnan∗
∗University of California, Riverside †Politechnico of Torino

Abstract—Data centers require high-performance and efficient
networking for fast and reliable communication between appli-
cations. TCP/IP-based networking still plays a dominant role
in data center networking to support a wide range of Layer-4
and Layer-7 applications, such as middleboxes and cloud-based
microservices. However, traditional kernel-based TCP/IP stacks
face performance challenges due to overheads such as context
switching, interrupts, and copying.

We present Z-stack, a high-performance userspace TCP/IP
stack with a zero-copy design. Utilizing DPDK’s Poll Mode
Driver, Z-stack bypasses the kernel and moves packets between
the NIC and the protocol stack in userspace, eliminating the
overhead associated with kernel-based processing. Z-stack em-
ploys polling-based packet processing that improves performance
under high loads, and eliminates receive livelocks compared to
interrupt-driven packet processing. With its zero-copy socket
design, Z-stack eliminates copies when moving data between the
user application and the protocol stack, which further minimizes
latency and improves throughput. In addition, Z-stack seamlessly
integrates with shared memory processing within the node,
eliminating duplicate protocol processing and serialization/dese-
rialization overheads for intra-node communication. Z-stack uses
F-stack as the starting point which integrates the proven TCP/IP
stack from FreeBSD, providing a versatile solution for a variety
of cloud use cases and improving performance of data center
networking.

Index Terms—DPDK, zero-copy, TCP/IP protocol stack, shared
memory

I. INTRODUCTION

Data centers now serve as the backbone of almost all
modern digital operations, hosting critical applications and
services in the cloud. The key to their efficiency lies in robust,
high-performance networking that ensures fast and reliable
communication between applications. With the widespread
adoption of microservice software architecture, applications
are being built as a set of loosely coupled functions. This
also results in frequent communication between application
components which can contribute to increased latency. All of
this requires the networking support to be fast and efficient,
handling large volumes of data, while ensuring quality of
service. In a cloud environment with multiple tenants and
with virtualization (e.g., especially containerization), it is also
important to consider the benefits of a user-space protocol
implementation that can potentially avoid interactions across
different tenant flows.

Most application designs still depend on the in-kernel
implementation for protocol processing (the kernel TCP/IP
stack), using the traditional POSIX sockets. They seek to
leverage the full functionality and reliability of a kernel

TCP/IP protocol stack. However, the kernel protocol stack
has a number of significant performance challenges [1]. Its
design, built for generality, was not originally focused on the
current high-speed, low-latency requirements of today’s data
center networking. It has a number of sources of overhead: (1)
Context switches: Caused by the need to switch between user
and kernel mode during packet processing, it adds considerable
latency [2]. (2) Interrupts: Handling network packet inter-
rupts can be resource-intensive [1]. (3) Data copies: Moving
data between the kernel and userspace results in additional
processing time [1]. (4) Protocol processing: Each layer of
the TCP/IP stack adds its own headers and performs its
checks and computations, which can be resource-intensive.
This includes tasks like computing checksums, segmenting/re-
assembling data packets, and handling retransmissions [3].
(5) Serialization/deserialization: The need to serialize and
deserialize data for transmission over the network adds to the
processing burden [2].

The overhead of kernel-based TCP/IP processing signif-
icantly impacts the performance of a variety of network
functions and applications in the cloud and leads to additional
CPU consumption [2], [4]. Existing solutions [2], [4], [5]
seek to leverage shared memory processing to bypass the
heavyweight kernel protocol stack and achieve considerable
performance improvement in various use cases in the cloud,
e.g., serverless computing [2], 5G core network [5], Network
Function Virtualization and Middleboxes [4]. However, shared
memory processing is limited to a single node and existing
solutions [2], [4], [5] still rely on the kernel protocol stack for
inter-node communication, leading to performance limitations.

Existing work explores high-performance inter-node com-
munication approaches, such as Remote Direct Memory Ac-
cess (RDMA [6]) or userspace TCP/IP stack with kernel
bypass [7], [8]. However, RDMA does not accelerate commu-
nication with external clients outside the data center. TCP/IP
stacks using kernel bypass, such as mTCP [7] and F-stack [8],
have a POSIX-compatible API design and can accelerate
data center networking. It can also improve communication
with external clients through the integration of a cluster-
wide ingress gateway at the edge of the data center cloud.
However, the existing userspace TCP/IP stack solutions often
introduce an additional copy when moving data between the
user application and the protocol stack. This is particularly
expensive when handling large messages (see §IV).

We describe Z-stack, which is a user-space high-
performance TCP/IP protocol stack with a zero-copy design.



Z-stack leverages DPDK’s Poll Mode Driver (PMD [9]) to
bypass the kernel and move packets between the NIC and
the protocol stack in userspace. We choose to use polling-
based packet processing, as it yields better performance under
high load and can eliminate receive livelock [10] compared
to interrupt-driven packet processing [11]. Moving protocol
processing to the userspace helps Z-stack eliminate a number
of kernel-related overheads. such as context switching and
interrupts. Further, Z-stack employs a more efficient, zero-
copy protocol processing that minimizes latency and maxi-
mizes throughput. We achieve this in Z-stack by eliminating
the data copy caused by the POSIX-style socket APIs, as
in [7], [8]. The data copy at the socket interface is a natural
fit with the userspace-kernel separation when the application
works with a kernel-based protocol stack. It requires isolating
the buffers between the user application and the kernel.
However, as we move the protocol stack into userspace, the
boundary crossing between the userspace and kernel is no
longer needed. Thus, it facilitates the elimination of the data
copy at the socket interface to deliver better performance.
With its zero-copy design, Z-stack can seamlessly work with
the shared memory processing within the node to eliminate
duplicate protocol processing and serialization/deserialization
overheads when moving the data across multiple components
of a user application [2] (e.g., with microservices) or network
functions [4].

We implement Z-stack on top of F-stack [8]. F-stack inte-
grates the TCP/IP stack from FreeBSD, which is proven to be
fully functional and robust, compared to other TCP/IP stacks
such as mTCP [7] and Microboxes [12]. Z-stack is available
at https://github.com/anvayabn/Z-stack.

II. RELATED WORK

Given the challenges with the traditional kernel-based
TCP/IP stack, several inter-node communication alternatives
have been explored in the past: (1) POSIX-compatible
userspace TCP/IP stacks: mTCP [7] is a high-performance
userspace TCP/IP stack with multicore scalability. It addresses
some of the TCP/IP stack’s limitations by using kernel bypass
and operates fully in userspace. This helps mTCP avoid the
overhead of kernel operations. mTCP also supports the effi-
cient handling of network traffic across multiple cores. How-
ever, mTCP is not a complete TCP/IP stack replacement [4].
F-stack [8] is a production-level userspace TCP/IP stack
developed by Tencent Cloud. It provides a high-performance
TCP/IP stack with the help of DPDK’s kernel bypass capabil-
ity, which uses DPDK Poll Mode Driver (PMD [9]) to process
network packets in userspace. In particular, F-stack’s TCP/IP
stack is migrated from FreeBSD, which is fully functional and
robust compared to TCP. (2) Demikernel [13] is another ex-
ample. It is a library operating system, in Rust, that leverages
kernel-bypass technologies like DPDK and RDMA. It provides
memory safety and efficient concurrency management through
co-routines instead of POSIX threads. However, Demikernel
requires applications to pre-segment their data into MTU-
sized segments before being given for transmission. In general,

Demikernel does not provide POSIX-like API, thus introduc-
ing additional overheads on the application development. (3)
TAS (TCP Acceleration as an OS Service) [14] uses a different
approach, replacing the data path of the TCP stack, with
the control remaining in the kernel. Data path features such
as congestion control, loss recovery, and packet filtering are
implemented in TAS. TAS has userspace threads that execute
packet IO using DPDK and post the data to the application,
which runs on a separate thread. The partial reliance on the
kernel can limit the overall performance gains from kernel-
bypass as the control path can become a bottleneck under
high network loads. (4) LUNA [15], is another approach that
uses SR-IOV to split traffic between the kernel and userspace
applications. However, LUNA uses a custom TCP/IP stack,
unlike the more robust FreeBSD TCP/IP that Z-stack builds
on. (5) RDMA allows direct memory access from the memory
of one computer to another without involving either one’s op-
erating system. By bypassing the OS, RDMA reduces latency
and improves throughput significantly [6]. It enables faster
data transfer rates, crucial for data-intensive applications. In
addition, RDMA offloads work from the CPU, freeing it up
for other tasks, thereby reducing CPU overhead [6]. However,
RDMA is not POSIX-compatible, requiring additional effort to
port legacy applications that rely on POSIX sockets. Although
there is POSIX-socket-style API support for RDMA such as
rsocket [16] to simplify application porting, rsocket incurs
an additional data copy between the application and RDMA
transport, which may reduce the benefit of RDMA.

Application FreeBSD NIC

ff_write()

ff_read()

TC
P

IP

Et
he

rn
et

 TX

RX

U
se

r B
uf

fe
r 

sosend()

sorecv()

Data Copy Data Copy 

DPDK
PMD

Programming
SDK

ff_dpdk_
if_send()

Fig. 1: Data copies in F-stack.

A. Anatomy of data copies in F-stack

We focus on the design of F-stack [8], a userspace TCP/IP
protocol stack implementation here, as it aims to streamline
network data handling while also ensuring POSIX API com-
patibility to ease application portability. As a consequence
of needing to maintain compatibility with the POSIX API,
user applications that utilize F-stack have to move (copy) the
data into a socket buffer to interact with the FreeBSD TCP/IP
implementation in F-stack, as shown in Fig. 1. There is an
additional data copy incurred within F-stack as part of protocol
processing, occurring at the interface between the protocol
stack and the DPDK’s PMD. This is caused by the distinct
memory management systems (i.e., memory allocator) used
by the protocol stack and the DPDK’s PMD.



Copy in transmit path: Examining the packet transmission
processing in F-stack in more detail (Fig. 1), we see that the
data (payload) is moved between the user application and
the socket buffer through F-stack’s POSIX-style APIs (ff
write()), which introduces an explicit data copy (via sosend()).
Subsequent to the protocol processing within F-stack, data
payload and protocol headers (TCP/IP) are copied (via ff
dpdk if send()) to a contiguous buffer owned by the DPDK’s
PMD.
Copy in receive path: When examining the receive direction,
the NIC DMAs the received data packets to the socket buffer
in F-stack, working with DPDK’s PMD. Subsequent to the
receive-side protocol processing in the userspace F-stack, the
data is copied (via sorecv()) from the socket buffer to the
receive buffer provided by the user application. The user
application consumes the data using the ff read() provided
by F-stack’s programming SDK.

Although F-stack provides relatively better performance and
is more comprehensive compared to other kernel-based or
(even) userspace protocol stacks, it does not eliminate the
overhead of data copying, which can be quite significant as we
evaluate in §IV. This is true when processing large messages,
causing up to 2× throughput degradation for F-stack.

III. DESIGN OF Z-STACK

A. Overview of Z-stack
Fig. 2 is an overview of the architecture of Z-stack. Z-stack

fully operates in userspace to avoid context switches between
the kernel and the userspace. It leverages DPDK’s PMD to
move packets between the NIC and the userspace protocol
stack, bypassing the kernel to eliminate the interrupt overhead
and the potential receive livelock [10]. The implementation
of the protocol stack is ported from FreeBSD. This gave us a
thoroughly tested and reliable TCP/IP stack that is responsible
for communication between network devices, ensuring that
packets are sent, routed, and received correctly. The user
application utilizes zero-copy socket APIs (z_read() and z_
write()), which use the memory location of the data directly
to interact with Z-stack. Z-stack retains the location in the
memory of the data and constructs the necessary headers. At
the interface, the network headers (TCP/IP) are prepended to
the data instead of performing a full copy to DPDK buffers.

DPDK PMD

NIC

FreeBSD

TCP/IP 

Programming SDK

Zero-Copy POSIX API

Kernel
Bypass

Fig. 2: An architectural overview of Z-stack.

Application FreeBSD NIC

z_write()

z_read()

TC
P

IP

Et
he

rn
et

 TX

RX

DPDK
PMD

Programming 
SDK

Headroom L7
Header 

L7
Payload

Data Pointer 

TCP/IP
Headers

L7
Header

L7
Payload

Data Pointer 

DMA to/fro
m

memory pool 

Fig. 3: Zero-copy design in Z-stack.

This process creates a contiguous data block that is then
transferred via DMA by the NIC. While we recognize that Z-
stack’s socket APIs are not fully POSIX compliant, requiring
applications to adapt their implementation to support these
APIs, the adaptation to Z-stack is straightforward, facilitated
by Z-stack’s Software Development Kit (SDK). Applications
need to prepare the buffer before using the write() API,
and provide a memory location when using the read() API.
To facilitate application development and interface with the
protocol stack, our SDK (slightly enhanced from F-stack’s
SDK) in Z-stack includes all the necessary coroutines and
socket management features such as epoll and kqueues.

B. Zero-copy socket APIs
Fig. 3 depicts Z-stack’s zero-copy design. Z-stack removes

the data copies by manipulating the buffers in the user applica-
tion and providing to the customized socket APIs (z_write()
and z_read()) a pointer to the data (i.e., descriptor). This
eliminates the memory-memory copies when data is moved
between the user application and the protocol stack. The API
requires the buffer to be prepared with sufficient headroom to
accommodate the TCP/IP header. The header is prepended to
the payload as it traverses through the TCP/IP stack.

1 /* Event loop to process network events */
2 int loop(void *arg)
3 {
4 struct kevent events[MAX_EVENTS];
5 int nevents = ff_kevent(kq, NULL, 0, events,

MAX_EVENTS, NULL);
6

7 for (int i = 0; i < nevents; ++i){
8 struct kevent event = events[i];
9 int clientfd = (int)event.ident;

10

11 if (event.filter == EVFILT_READ) {
12 void *mb;
13 ssize_t readlen = z_read(clientfd, &mb

,4096);
14

15 if (readlen > 0) {
16 char * data = ff_mbuf_mtod(mb);
17 ff_mbuf_free(mb);
18 }
19 }
20 }
21

22 return 0;
23 }

Listing 1: Example using z_read().



Zero-copy Read API (z_read()): For a read operation, z_
read() is designed to provide a user application with the
pointer to the data in the receive buffer avoiding the need
to copy data into a buffer in the user application. As shown
in Listing 1, the z_read() API is invoked by the application
when there is data on the socket. The epoll notification mecha-
nism is used to notify the application of any READ events on
the socket. The z_read() is called by the application with
a pointer (*mb in Listing 1) to a memory location for the
received data. The z_read() API returns the memory location
containing the reference to the L7 data buffer. The ownership
of the buffer is transferred to the application. Z-stack puts the
responsibility on the user application to free the buffer (via
ff_mbuf_free()) once it completes the processing of data
and no longer needs it.

Zero-copy Write API (z_write()): The z_write() API
is called with a descriptor to the payload directly in the
user application that it had created (via rte_pktmbuf_
alloc() in Listing 2). It is typically used in conjunction
with a notification mechanism (e.g., epoll) to send data once
the socket is writable. The data buffer is manipulated while
residing in the user application space, knowing the size of the
data to be transmitted. The buffers here are allocated from the
DPDK’s memory allocator maintaining a headroom for the
packet header. The z_write() API takes a socket descriptor,
a data buffer containing the data to be sent, and the size of
the data. Z-stack also eliminates the data copy when moving
the data from protocol stack to DPDK’s PMD (with F-stack,
there is a copy introduced in ff dpdk if send() because data is
copied from the application onto a FreeBSD buffer, and then
after protocol processing, the data is copied into a 2KBytes
DPDK buffers at the interface between FreeBSD and DPDK’s
PMD). Since the data buffer is managed by DPDK’s memory
allocator throughout the data path, Z-stack can eliminate this
data copy because the user application copies the data directly
to the DPDK buffer, and Z-stack can manipulate the same
buffer by prepending the TCP/IP header. The data is then
handed to the NIC to be transmitted, utilizing the scatter-gather
capability of NIC’s DMA engine (see §III-E). This direct data
path from the user application to the NIC ensures that the
payload remains intact.

1 struct rte_mempool *mbuf_pool =
2 pktmbuf_pool[lcore_conf.socket_id];
3 rte_mb = rte_pktmbuf_alloc(mbuf_pool);
4 data = rte_pktmbuf_mtod(rte_mb, char *);
5 // Copy data into buffer
6 memcpy(data, "Your data here", data_size);
7 rte_mb->data_len = data_size;
8 rte_mb->pkt_len = rte_mb->data_len;
9 // Get a message buffer for sending

10 mb = ff_mbuf_get(NULL, rte_mb, data, rte_mb->
data_len);

11 // Send data over the socket
12 z_write(clientfd, mb, rte_mb->data_len);

Listing 2: Example using z_write().

C. Managing Multiple Concurrent Connections
Concurrent connection management is a critical component

of the protocol stack to enable the support of multiple user
sessions, each of which is distinguished by its own connection.
Z-stack is designed to handle multiple connections simultane-
ously as shown in Fig. 4. The key to implementing concurrent
connection management is to bind distinct sockets (“Socket1”
to “SocketN” in Fig. 4) to different connections, with a listen-
ing socket used to setup the connection between the read/write
sockets of the client and server. Multiple connections of a
user application share the same listening socket for connection
establishment, as is done with typical socket programming. Z-
stack’s protocol processing demultiplexes packets to connected
sockets based on IP tuples (i.e., source/destination IP addresses
and source/destination port numbers).

As shown in Fig. 4, the server using Z-stack opens a
listening socket (bound to a specific port), which is the pri-
mary endpoint to listen to incoming connection establishment
requests from clients. The listening socket subscribes to a
notification mechanism (e.g., kqueue/epoll). The notification
mechanism monitors multiple file descriptors (i.e., sockets) to
see if they are ready for I/O operations, thus enabling the
server to manage multiple connections concurrently.

Each new client socket is dedicated to a particular client,
created by the listening socket. The client socket also sub-
scribes to the notification queue. This allows the server to be
notified when there is activity on these client sockets. E.g.,
when a client sends data, the corresponding client socket in
the server becomes “ready for reading,” and this state change
is reported as an event in the queue. The server’s event loop
continuously polls the notification queue for new events. When
an event is detected on a client socket, the server reads the
incoming data from that socket for processing based on the
application’s logic. If the server needs to send data back to
the client, it writes the response to the client’s socket.

ClientClient

Event Loop 

Kqueue Listening Socket 

Socket N 
Socket 2

Socket1 

Write 
Connect

Clients

User
Application

Read

NIC

K
er

ne
l

D
PD

K
PM

D

1.2.

3.Subscribe

7. Subscribe

5.Events 4.
Po

ll
8. Read

9. Write

User Space

6. Accept

TC
P 

pr
ot

o.
 p

ro
ce

ss
in

g

Fig. 4: Concurrent Connection Management in Z-stack.

D. Non-blocking I/O

Z-stack implements non-blocking I/O to manage network
communication efficiently. Socket operations such as ff
accept(), ff connect(), ff read(), and ff write() are executed in
a non-blocking manner, i.e., when invoked, these operations re-
turn control to the application rather than waiting for data to be
ready, or for the write to complete. Z-stack also incorporates an
event-driven model by using kqueue/epoll-based notification
mechanism (Fig. 4). This event-driven notification mechanism



monitors multiple sockets and alerts the application when a
socket is ready for further action without a blocking wait.
This method of I/O operations reduces the idle time of the
application and uses system resources efficiently.

E. Hardware Offloading in Z-stack (TSO/LRO)

Modern NICs typically support TCP Segmentation Offload
(TSO [17]) and Large Receive Offload (LRO [17]) to acceler-
ate TCP/IP processing. Z-stack also takes advantage of these
features. TSO allows the protocol stack to pass a large buffer
as a single unit to the NIC. The NIC hardware takes care of
segmenting this large buffer into smaller MTU-sized packets.
This reduces CPU utilization and improves overall system
performance. In Z-stack, TSO becomes particularly relevant
as it uses a single buffer per transmission, avoiding buffer
chaining. When a large message is ready for transmission,
Z-stack relies on the NIC’s TSO capability to handle the
segmentation.

IV. EVALUATION

We compare the performance of Z-stack against F-stack [8]
and Linux kernel protocol stack, using an echo server appli-
cation. The comparison between Z-stack and F-stack allows
us to quantify the performance improvement of Z-stack’s
zero-copy protocol processing and understand in-depth the
overhead of copying data. The comparison against the Linux
kernel protocol stack helps us understand the difference in the
performance of protocol processing in userspace and the over-
heads introduced with context switching between userspace
and kernel space.
Testbed setup: We set up our experiments on NSF Cloud-
Lab [18]. We use two r650 nodes, each with a 100Gbps
NIC. We use Ubuntu 20.04 with kernel version 5.15. We
use wrk [19] — an HTTP load generation tool to send
HTTP requests to the echo server application. The echo server
application returns the HTTP response to wrk. We focus
on the inter-node latency and throughput: the wrk and echo
server applications are placed on different nodes. Latency and
throughput are measured for different representative message
sizes, ranging from small requests (64KBytes, 1KBytes) to
large requests (4KBytes, 8KBytes). We also vary the concur-
rency and observe how the server handles a large number of
connections (up to 200 concurrent connections).

1 50 100 150 200
Concurrency

0
25
50
75
100
125
150
175
200

K
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 5: Throughput (left) and latency (right) (64Byte mes-
sages). “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

1 50 100 150 200
Concurrency

0

2

4

6

8

10

G
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 6: Throughput (left) and latency (right) with 1KBytes
message. “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

1 50 100 150 200
Concurrency

0

5

10

15

20

25

30

G
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 7: Throughput (left) and latency (right) with 4KBytes
message. “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

A. Throughput and latency performance

For small messages (64Bytes, 1KBytes), Z-stack has similar
throughput and latency performance compared to F-stack (see
Fig. 5 and Fig. 6). This is consistent with the observation
in [1], in that the data copy is not the dominant networking
overhead when message sizes are small. However, even going
from 64Bytes to 1KBytes, we still observe that there is a
performance difference between Z-stack and F-stack. The data
copy incurred in F-stack accounts introduces a small perfor-
mance loss, both in throughput and latency compared to Z-
stack. When compared to the kernel protocol stack, Z-stack’s
zero-copy design (§III-B) substantially reduces the time spent
on protocol processing. With 64Bytes (Fig. 5) and 1KBytes
(Fig. 6) message sizes, Z-stack shows a significant throughput
improvement and latency reduction (up to 5×), underscoring
the efficiency gains from its design optimizations, including
polling-based packet processing and bypassing the kernel.

As shown in Fig. 7 and Fig. 8, the performance im-
provement of Z-stack becomes even more significant with
larger message sizes (4KBytes and 8KBytes). Z-stack achieves
∼2× the throughput and reduced latency when compared
against F-stack. Against the kernel protocol stack, Z-stack’s
throughput showed an even more significant improvement,
reaching around 4× higher throughput.

1 50 100 150 200
Concurrency

0

10

20

30

40

50

60

G
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 8: Throughput (left) and latency (right) with 8KBytes
message. “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.



60 120 200 290
RPS (x 1K)

0

50

100

150

200

250

300

350

C
P

U
 (

%
)

Z-Stack

K-Stack(interrupt)

K-Stack(others)

Fig. 9: CPU overhead.“K-stack”: Kernel stack.

B. CPU Overhead
Z-stack utilizes DPDK’s PMD to move packets between the

userspace application and the NIC. This requires a designated
CPU core confined solely to the PMD, which constantly
consumes CPU cycles as the CPU core is engaged in polling
activity even in the absence of packets to process. Fig. 9 shows
the comparison of the CPU overhead between Z-stack and
kernel protocol stack.

Under light loads (up to about 60K requests per second),
the CPU core utilization for the kernel protocol stack is 76%,
while Z-stack’s CPU utilization due to DPDK’s PMD is at
100%. However, as we keep increasing the load, the kernel
protocol stack shows significant CPU inefficiency, which is
caused by its interrupt-based packet handling. For instance,
when the load is 290K requests per second, the kernel protocol
stack spends 122% CPU core on handling interrupts from the
NIC, which leads to a total CPU consumption of 340% (3.4
CPU cores used). On the other hand, Z-stack’s CPU utilization
is still 100%, which is 3.4× less than the kernel protocol
stack. This empirical evidence suggests that in comparison to
the conventional kernel protocol stack, which incurs elevated
CPU consumption stemming from NIC interrupt handling, Z-
stack’s polling approach proves to be more efficient for even
slightly heavier traffic loads (e.g., even at 120K requests/sec).
In addition, we allow multiple user applications to share the
Z-stack to amortize the polling overhead under light load.

V. CONCLUSION

This paper described Z-stack, a high-performance userspace
TCP/IP protocol stack that offers true zero-copy data move-
ment between the user application and NIC. Z-stack uses
DPDK’s poll mode to move data between userspace and the
NIC, outperforming the kernel-based approach that inevitably
incurs context switches and interrupts. This increases through-
put and reduces latency up to a factor of 5. Z-stack further
adopts a zero-copy socket interface to move data between the
protocol stack and the user application. This yields overall a
2× throughput and latency improvement when handling large
messages. The zero-copy design of Z-stack makes it suitable
for local shared-memory processing, which helps improve data
plane performance when distributed applications are organized
in a complex chain.

ACKNOWLEDGMENT

We thank the US NSF for their generous support through
grants CRI-1823270, CNS-1818971.

REFERENCES

[1] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proceedings of the
2021 ACM SIGCOMM 2021 Conference, ser. SIGCOMM ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 65–77.

[2] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright:
Extracting the server from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing,” in Proceedings of the
ACM SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 780–794.

[3] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 656–671, 2021.

[4] S. Qi, Z. Zeng, L. Monis, and K. K. Ramakrishnan, “Middlenet: A
unified, high-performance nfv and middlebox framework with ebpf and
dpdk,” IEEE Transactions on Network and Service Management, vol. 20,
no. 4, pp. 3950–3967, 2023.

[5] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. K.
Ramakrishnan, and J.-C. Chen, “L25gc: a low latency 5g core network
based on high-performance nfv platforms,” in Proceedings of the ACM
SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 143–157.

[6] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). Boston, MA: USENIX Asso-
ciation, Feb. 2019, pp. 1–16.

[7] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: a highly scalable user-level TCP stack for multicore
systems,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 489–502.

[8] “F-Stack,” https://github.com/F-Stack/f-stack, 2024, [ONLINE].
[9] “Poll Mode Driver,” https://doc.dpdk.org/guides/prog guide/poll mode

drv.html, 2024, [ONLINE].
[10] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in

an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, 1997.

[11] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in 2012
USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX Association, Jun. 2012, pp. 101–112.

[12] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and T. Wood,
“Microboxes: high performance nfv with customizable, asynchronous
tcp stacks and dynamic subscriptions,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 504–517.

[13] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,
A. Martinez, J. Liu, A. K. Simpson, S. Jayakar, P. H. Penna, M. De-
moulin, P. Choudhury, and A. Badam, “The demikernel datapath os
architecture for microsecond-scale datacenter systems,” in Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
ser. SOSP ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 195–211.

[14] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and
T. Anderson, “Tas: Tcp acceleration as an os service,” in Proceedings
of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019.

[15] L. Zhu, Y. Shen, E. Xu, B. Shi, T. Fu, S. Ma, S. Chen, Z. Wang, H. Wu,
X. Liao, Z. Yang, Z. Chen, W. Lin, Y. Hou, R. Liu, C. Shi, J. Zhu, and
J. Wu, “Deploying user-space TCP at cloud scale with LUNA,” in 2023
USENIX Annual Technical Conference (USENIX ATC 23). Boston,
MA: USENIX Association, Jul. 2023, pp. 673–687.

[16] “rsocket,” https://linux.die.net/man/7/rsocket, 2024, [ONLINE].
[17] “TCP offload engine,” https://en.wikipedia.org/wiki/TCP offload

engine, 2024, [ONLINE].
[18] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
and P. Mishra, “The design and operation of CloudLab,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 1–14.

[19] “wrk,” https://github.com/wg/wrk, 2024, [ONLINE].


