
X-IO: A High-performance Unified I/O Interface
using Lock-free Shared Memory Processing

Shixiong Qi∗, Han-Sing Tsai†, Yu-Sheng Liu†, K. K. Ramakrishnan∗, Jyh-Cheng Chen†
∗University of California, Riverside, †National Yang Ming Chiao Tung University

Abstract—Cloud-native microservice applications use different
communication paradigms to network microservices, including
both synchronous and asynchronous I/O for exchanging data.
Existing solutions depend on kernel-based networking, incurring
significant overheads. The interdependence between microser-
vices for these applications involves considerable communication,
including contention between multiple concurrent flows or user
sessions. In this paper, we design X-IO, a high-performance uni-
fied I/O interface that is built on top of shared memory processing
with lock-free producer/consumer rings, eliminating kernel net-
working overheads and contention. X-IO offers a feature-rich
interface. X-IO’s zero-copy interface supports building provides
truly zero-copy data transfers between microservices, achieving
high performance. X-IO also provides a POSIX-like socket
interface using HTTP/REST API to achieve seamless porting
of microservices to X-IO, without any change to the application
code. X-IO supports concurrent connections for microservices
that require distinct user sessions operating in parallel. Our
preliminary experimental results show that X-IO’s zero-copy
interfaces achieve 2.8x-4.1x performance improvement compared
to kernel-based interfaces. Its socket interfaces outperform kernel
TCP sockets and achieve performance close to UNIX-domain
sockets. The HTTP/REST APIs in X-IO perform 1.4x-2.3x better
than kernel-based alternatives with concurrent connections.

Index Terms—DPDK, communication in service function
chains, shared memory, unified I/O interface

I. INTRODUCTION
Cloud-native applications are shifting from monolithic to

microservices-based architectures. A typical example is the
evolution of the cellular core network (going from purpose-
built hardware appliances, to monolithic software-based imple-
mentations, to a disaggregated microservices-based 5G core).
A microservice paradigm provides flexibility in development
and deployment, modularity, and scalability at the individual
function level. However, the loose coupling between microser-
vices imposes communication overheads for the microservice-
based components to together complete a task. For example,
in the 5G core (5GC) control plane, the various components
for access and mobility management, authentication, and data
management, work together to complete the task of registering
a User Equipment’s (UE) session.

Typical communication paradigms adopted by microser-
vices can be broadly classified into (1) synchronous data
exchange (I/O in short) between a pair of microservices,
and (2) asynchronous I/O. Synchronous I/O is bidirectional,
where the source microservice (caller) sends a message to the
destination microservice (callee) and waits until a response
is returned. A typical example of synchronous I/O in the
dataplane between microservices is a Remote Procedure Call
(RPC). On the other hand, asynchronous I/O is unidirectional

where the caller is not blocked after sending the message
to the callee. Asynchronous I/O has been widely used to
organize communication among a set of interdependent mi-
croservices as a Directed Acyclic Graph (DAG), with only
directed asynchronous communication pattern considered be-
tween microservices. Asynchronous I/O is not able to support
a synchronous ‘request-response’ communication paradigm.
The I/O operation (initiated by the caller) in ‘request-response’
type communication is always blocked for the synchronization
to be performed with the callee, i.e., the callee returns a
response back to the caller, indicating to the caller that the
I/O operation is complete and it can proceed. This leads to a
mismatch in how asynchronous I/O and synchronous I/O are
implemented.

Despite distinct operating modes, existing solutions adopted
by cloud-native microservices for synchronous I/O (e.g.,
gRPC, 3GPP SBI) and asynchronous I/O, typically inter-
act through the kernel-based networking stack. However,
communicating through a full-fledged kernel-based network-
ing stack proves to be heavyweight and imposes signifi-
cant overheads on the dataplane, including data copy, proto-
col processing, serialization/de-serialization, heavyweight ker-
nel/userspace boundary crossing, and interrupts. This adds
additional latency and limits the performance of backend
microservices [1], [2].

Moreover, within a group of coupled microservices, an
individual microservice may consume messages from multiple
upstream microservices (producers) or produce messages to
multiple downstream microservices (consumers). This results
in a multiple-producer, multiple-consumer communication pat-
tern, leading to contention when there is concurrent process-
ing. Using a lock can ensure correct operation when there is
contention, but in turn, exacerbates the communication-related
performance degradation for microservice chains. This is es-
pecially concerning for use cases that have stringent latency
requirements, such as 5GC, Network Function Virtualization
(NFV), and Middleboxes, which demand sub-millisecond or
even microsecond scale networking between microservices.

Shared memory can be a very effective means for commu-
nicating information between microservices within a node, as
it eliminates the overhead of a full-fledged kernel-based net-
working stack. Further, having a lock-free producer/consumer
ring framework can help reduce contention between microser-
vices accessing this shared memory. With the help of such a
lock-free, shared memory communication, the performance of
both synchronous and asynchronous I/O can be considerably

improved, benefiting applications that use microservices, with
low-latency, high-performance networking.

However, harmonizing cloud-native microservices that need
either synchronous, asynchronous I/O or both, with a single
high-performance communication framework is not straight-
forward, due to the distinct needs for the communication
paradigms (synchronous vs. asynchronous). This motivates
us to create a unified I/O interface that can flexibly work
either synchronously OR asynchronously with shared memory
processing in a lock-free manner - one that would allow
us to avoid the dataplane overheads that exist in current
kernel-based networking. In addition, a careful design of the
Application Programming Interface (API) that is exposed to
a microservice is required to avoid extensive rewriting of
the application’s implementation. Furthermore, cloud-native
microservices, such as the 5GC, often need to handle messages
of different user sessions or flows in parallel. This requires
maintaining the underlying transport state (e.g., connection or
user session state) and distinguishing clients that a particular
microservice communicates with.

In addition to the mismatch between synchronous and
asynchronous I/O, another challenge comes from program-
ming language incompatibility. A considerable number of
cloud-native microservices, which place more emphasis on
functionality and development velocity, often choose to use a
high-level programming language (e.g., Golang). On the other
hand, approaches designed for high-performance networking
use cases (e.g., DPDK), utilize programming languages with
low-level primitives, such as C.

This paper proposes X-IO, a high-performance unified I/O
interface designed for cloud-native microservice applications.
We implement X-IO using shared memory processing with
lock-free producer/consumer rings between microservices on
the same node as the “X-IO stack” (§III-B), which is a far sim-
pler alternative to the kernel networking stack. This achieves
zero-copy packet delivery, bringing substantial improvement to
data plane performance. X-IO stack exposes a set of primitives
for the zero-copy interface (§III-C) to be leveraged by upper-
layer applications to construct a zero-copy data plane between
microservices. It also supports a set of POSIX-like primitives
for the socket interface (e.g., Read(), Write()), built with
the shared memory processing in X-IO stack (§III-D). An
abstraction layer, X-IO library, is designed to harmonize with
the underlying X-IO stack, and provides the POSIX-like I/O
primitives to upper-layer applications. This eases the porting of
existing microservices that depend on a POSIX socket to ben-
efit from X-IO’s lock-free, shared memory processing. Both
synchronous and asynchronous communication paradigms can
be constructed by exploiting X-IO’s zero-copy or socket inter-
faces (§III-E). Specifically, we demonstrate X-IO’s capability
in supporting synchronous I/O by using the 3GPP SBI in
5GC as a case study. We use X-IO to construct the equiv-
alent HTTP/REST APIs (e.g., GET(), POST()) to replace the
kernel-based HTTP/REST APIs for existing 5GC functions,
while keeping the function implementation unchanged. X-IO
is designed to support concurrent connections by by having

client

request

server
thread

read()
client
thread

write()

Network
client

request

response

server
thread

read()

write()

client
thread

write()

read()
Network

Fig. 1: (Left) Asynchronous I/O; (Right) Synchronous I/O.
each microservice maintain a local connection table in its
X-IO stack to track connection state. This is helpful when
the microservice needs to support multiple user sessions, each
with its own distinct connection. Requests are de-multiplexed
to the correct connection endpoint after looking up the local
connection table in the X-IO stack (§III-D). X-IO offers
cross-language support by leveraging the CGo interface [3] to
mitigate the programming language incompatibility between
the lower-layer X-IO stack (implemented in C) and upper-
layer socket interfaces and HTTP/REST APIs (implemented
in Golang), thus reducing the porting effort for microservices
developed with Golang.
X-IO is available at https://github.com/nycu-ucr/xio.git

II. RELATED WORK & BACKGROUND

I/O Primitives in Linux: Linux offers a variety of I/O prim-
itives to support I/O tasks, such as the socket interfaces (e.g.,
listen(), accept(), connect(), read(), and write()). Asynchronous
I/O between a pair of client/server can be easily constructed by
leveraging the basic I/O primitives, e.g., read() and write(). As
shown in Fig. 1 (left), the client sends a message via write(),
which is received by the server via read(). Since asynchronous
I/O is used, the client continues with other tasks without being
blocked and does not wait for a response from the server.
The synchronous I/O mode requires at least two pairs of
read()/write() calls between the client and server, as depicted
in Fig. 1 (right). After the client invokes the write() call to
send the message to the server, the client will be blocked on
its read() call until a response is returned by the server. The
synchronous/asynchronous I/O developed on socket interfaces
relies on kernel-based networking, which introduces a number
of overheads (e.g., data copies, context switches, etc) in the
datapath, impacting performance.

Linux also provides other advanced I/O primitives, e.g.,
aio [4], io uring [5]. However, aio is only available for storage-
related I/O operations and cannot be used for network I/O.
io uring on the other hand does support network-related I/O
operations. It uses a lock-free producer/consumer ring design
that reduces interrupts and context switches for I/O operations,
unlike the read()/write() socket interface. However, io uring
still depends on kernel-based networking, incurring the over-
heads of data copies and protocol processing. X-IO improves
I/O performance using the combination of shared memory
communication and lock-free producer/consumer rings, thus
delivering much better performance compared to kernel-based
io uring (evaluated in §IV-A).
Network I/O optimizations: Multiple proposals exist for
optimizing network I/O [6]–[9]. However, these designs are
targeted for specific use cases. e.g., [6] improves the NFV
dataplane by using shared memory processing and lock-free
producer/consumer rings, but [6] does not support synchronous
I/O, unlike X-IO. [7] uses DMA to avoid CPU-based copies

involved in data transfers, but DMA introduces additional PCIe
delays, resulting in lower performance compared to the shared
memory communication used in X-IO. [8], [9] seek to design
a zero-copy interface in supporting synchronous I/O. But they
both lack optimization for specific use cases (e.g., NFV) that
requires high-performance asynchronous I/O. X-IO addresses
these concerns by offering a unified I/O, while still using
shared memory to achieve a high-performance dataplane.
Data Plane Development Kit (DPDK): DPDK [10] sup-
ports both inter-host kernel-bypass (between userspace and
NIC) and intra-host kernel-bypass (between processes on the
same host). It has been widely used in NFV to build high-
performance data planes, e.g., in OpenNetVM [6]. DPDK
offers a Poll Mode Driver (PMD) to deliver packets between
userspace and the NIC, bypassing the kernel for inter-host
communication. DPDK also features a set of useful libraries
(RTE RING lib [11], multi-process support [12], Mempool
lib [13]) to help construct an intra-host kernel-bypass data
plane based on shared memory. DPDK makes targeted opti-
mizations on packet processing within its libraries, e.g., the use
of Linux HugePages, and efficient synchronization for memory
access (lightweight locking). This feature-rich toolkit enables
a customized, high-performance packet processing pipeline.

DPDK’s RTE RING is a shared memory ring buffer that
can be used as a low-latency Inter-Process Communication
(IPC) channel between individual applications. Working in
conjunction with DPDK’s multi-process support [12] and
Mempool lib, to construct a shared-memory-based dataplane,
the DPDK RTE RING producer/consumer ring framework
can enable zero-copy packet delivery between applications.
It passes packet descriptors (containing pointers to data in
shared memory) between applications, thus operating at mem-
ory speed. This guarantees high dataplane throughput and
low latency, especially when a networked microservice is
organized as a chain to follow a certain execution order. Due
to these desirable characteristics, we choose DPDK as the
basic building block of X-IO’s communication stack (i.e., X-
IO stack). However, our ideas are generally applicable and
can work with other alternatives, e.g., the event-driven shared
memory processing utilizing the extended Berkeley Packet
Filter (eBPF) in the Linux kernel (as in SPRIGHT [1]).

III. DESIGN OF X-IO
We first provide an overview of X-IO and introduce the key

building blocks for constructing a high-performance unified
communication paradigm that avoids the typical overheads
of synchronous/asynchronous communication using the kernel
protocol stack. We then discuss each part in detail, including
shared memory processing, lock-free producer/consumer rings,
different I/O interfaces in X-IO, and connection management.
Specifically, X-IO offers two alternative interfaces: a zero-copy
interface, and separately, a POSIX-like socket interface. We
also describe how to construct a synchronous/asynchronous
communication channel between microservices using different
interfaces offered by X-IO, and discuss a case study of using
X-IO to support 3GPP SBI.

A. Overview of X-IO
Fig. 2 depicts the architecture of X-IO. A shared memory

pool is created on each node to support shared memory com-
munication between X-IO-based microservices. We introduce
the X-IO manager, a per-node userspace component respon-
sible for initializing the shared memory pool. We also use
the X-IO manager to perform lock-free communication (i.e.,
packet descriptor delivery) between multiple microservices.

We introduce an X-IO stack with each microservice to
support shared memory communication with other microser-
vices co-located on the same node. This avoids a number of
dataplane overheads in kernel-based networking (e.g., protocol
processing, copies, serialization/deserialization). Within the X-
IO stack, there is a packet handler that handles all incom-
ing/outgoing requests. Requests related to connection handling
(e.g., establishment/teardown) are also processed by the packet
handler to complete connection management tasks. Each X-IO
stack maintains a local connection table to support concurrent
connections. For a certain request, its connection is identified
through the connection table lookup using IP 4-tuples (source
IP and port number, destination IP and port number). The
request is then forwarded to the correct connection endpoint
(i.e., a certain user thread) by the packet handler in the X-IO
stack (details in §III-D).

Since X-IO exploits shared memory for communication
between microservices, the request payload always resides in
shared memory without being moved. Requests are exchanged
in the form of packet descriptors, which contain critical
metadata such as the request type, and the pointer to the
payload in shared memory. To exchange packet descriptors
between different X-IO stacks, the packet handler in the X-IO
stack is assigned a pair of producer/consumer rings. The X-IO
stack uses the producer/consumer rings to facilitate a lock-free
packet descriptor exchange with the X-IO manager (§III-B).
We use the X-IO manager to route the packet descriptor
(based on IP 4-tuples) between the X-IO stacks belonging
to different microservices. X-IO exposes a set of zero-copy
interfaces (§III-C) from the X-IO stack to facilitate shared
memory communication between microservices.

The higher-layer application code interacts with the X-IO
stack through the X-IO library (X-IO lib in short). The X-
IO lib also offers a separate socket interface and HTTP/REST
APIs for higher-layer applications to use. Our current imple-
mentation of X-IO lib is based on Golang because of its popu-
larity in developing cloud-native microservices. Since X-IO lib
keeps the same semantics as Golang’s socket and HTTP/REST
APIs, porting applications to use X-IO is seamless.

application
user

thread

X-IO Libs

X-IO stack

Packet
handler

X-IO
manager

RouterConn.
table

Shared
memory

R

T

application

X-IO Libs

X-IO stack

Packet
handler Conn.

tableR

T

user
thread

user
thread

user
thread

user
thread

user
thread

conn_1 conn_2 conn_3 conn_1 conn_2 conn_3

socket
interfaces

…Read() Accept()

HTTP/REST
APIs

…GET() POST()
HTTP/REST

APIs…PUT() DELETE()

socket
interfaces

…Write() Dial()

zero-copy api
xio_malloc() xio_tx() xio_rx()

zero-copy api
xio_malloc() xio_tx() xio_rx()

Fig. 2: An architectural overview of X-IO

We base the implementation of X-IO on top of Open-
NetVM [6]. Specifically, we build the X-IO manager on top of
OpenNetVM’s NF manager for shared memory pool creation
and descriptor routing. We implement the packet handler in
X-IO stack using the NFLib in OpenNetVM, which offers
basic primitives to operate producer/consumer rings to support
the descriptor exchange. The packet handler is implemented
using C language. The packet handler (in C) interacts with
the higher-layer X-IO lib (in Golang) through the CGo inter-
face [3] provided by Golang. The C-to-Go boundary crossing
incurs negligible additional latency (70ns in our testbed) and
thus has very little impact on the dataplane performance.
The cross-language support for other high-level programming
languages (e.g., Python) is part of our ongoing work.

B. Lock-free shared memory communication
Two key elements are required to support shared memory

communication: (1) a pool of shared memory buffers; (2)
packet descriptor delivery mechanism. The shared memory
pool provides a shareable backend to store the payload ac-
cessed by microservices. The packet descriptor delivery passes
the pointer to the payload in the shared memory between
different microservices instead of moving the payload (i.e.,
memory-memory copy). Microservices use the packet descrip-
tor to access the payload in shared memory, achieving zero-
copy packet delivery.
Shared memory pool: X-IO uses the X-IO manager (Fig. 2)
to manage the initialization of the shared memory pool that
contains a certain number of shared memory buffers. The X-
IO manager runs as the DPDK primary process, which gives it
privileged permission to create the memory pool in the Linux
file system. It utilizes DPDK’s Mempool Library [13] to create
pools of memory buffers (using rte mempool create() API).
It is also necessary to specify a unique ‘shared data file prefix’
that the X-IO manager uses when creating memory buffers in
the file system. The DPDK’s Environment Abstraction Layer
(EAL) takes the ‘shared data file prefix’ to distinguish between
different shared memory pools. Since all shared memory
buffers are pre-allocated during the initialization of the shared
memory pool, this avoids adding unnecessary latency to the
creation of shared memory buffers during message transfer.
Note: our current implementation only supports fixed-size
shared memory buffers.

An X-IO-based microservice attaches to the shared memory
pool before accessing the shared memory buffers. To enable
sharing of memory buffers created by X-IO manager, X-IO
makes use of DPDK’s multi-process support. DPDK’s multi-
process leverages the ‘shared data file prefix’ to attach DPDK
secondary processes1 (X-IO-based microservices in our con-
text) to the shared memory pool. An X-IO-based microservice
is permitted to access a shared memory pool, only if it is
specified to have the same ‘shared data file prefix’ as the X-IO
manager during its startup. This ‘shared data file prefix’ feature

1DPDK secondary processes are those that have read/write access to the
shared memory buffers but do not have create/destroy permission.

Shared memory

X-IO manager

R

R

Routing table T

T

2

X-IO
stack

X-IO
stack

Router

1

3

4
5

6

7

app. app.

Fig. 3: Shared memory communication in X-IO using raw I/O primitives.
can be further extended for isolation purposes when X-IO-
based microservices are divided into different security domains
co-located on the same node [1]. Each security domain has a
private shared memory pool.
Lock-free packet descriptor delivery: X-IO utilizes DPDK’s
RTE RING to pass packet descriptors between the X-IO stacks
of different microservices. DPDK’s RTE RING, in essence,
is a shared memory circular buffer that is shared between a
producer and consumer. Though it offers a high-speed IPC
channel to deliver packet descriptors between producer/con-
sumer at memory speed, locks would be needed when multiple
producers write to the same buffer simultaneously. Acquiring
and releasing locks would increase the latency and overheads
for descriptor delivery in X-IO, and offset the benefit of this
high-speed IPC model.

To achieve a lock-free producer/consumer ring design, we
assign each X-IO stack with a pair of RTE RINGs, one for
receive (RX) and the other for transmit (TX). Further, we only
allow the X-IO stack to share its RTE RING pair with the X-
IO manager. This restricts access to a single producer and
consumer to write/read to the ring, thereby avoiding having
to acquire a lock [6]. We leverage the X-IO manager to pass
descriptors between different X-IO stacks.
Lock-free access to shared memory: The lock-free access to
the shared memory buffer is controlled by the ownership of
the descriptor. Only the microservice that currently owns the
descriptor has write access to the shared memory buffer.

C. Raw I/O primitives in X-IO: zero-copy interfaces
X-IO exposes raw I/O primitives from the X-IO stack

to construct a zero-copy communication channel between
microservices. Zero-copy I/O primitives provided by X-IO
include xio malloc(), xio tx(), and xio rx(), which are built
on top of DPDK’s RTE RING and Mempool APIs. xio
malloc() uses DPDK’s rte mempool get() API to retrieve a
packet descriptor pointing to an empty memory buffer from
the shared memory pool. xio tx() enqueues the descriptor to
the TX ring using the rte ring enqueue() API and xio rx()
dequeues the RX ring to retrieve the descriptor (using rte
ring dequeue()). Note that our current implementation only
supports polling mode of DPDK’s RTE RING. The consumer
of the ring (either X-IO stack or X-IO manager) uses up
one CPU core to constantly poll the ring to receive packet
descriptors. This leads to unnecessary CPU wastage at low
traffic intensities. X-IO can adopt the NFVnice [14] scheduling
principles to mitigate the CPU resource consumption, and
multiplex a CPU core across multiple X-IO stacks.

Fig. 3 depicts the zero-copy, shared memory communication
in X-IO using raw I/O primitives. The source microservice

(caller) calls xio malloc() to retrieve an empty memory buffer
used to write the payload. The caller then invokes xio tx() to
enqueue the descriptor of that memory buffer to its TX ring.
On the other side, the X-IO manager polls the TX ring of
the caller to retrieve the descriptor. The X-IO manager parses
the routing information in the descriptor, looks up the routing
table, and enqueues the descriptor into the RX ring of the
destination microservice (callee). The callee uses xio rx() to
receive the descriptor from its RX ring, which is then used
to access the payload in shared memory. No copying of the
message is involved with the transmission and we eliminate a
number of other overheads compared to kernel-based network-
ing. Although the exchange does involve descriptor copies, it
is a very small amount of data with negligible transmission
overhead compared to the actual payload.
Limitations: X-IO’s zero-copy interface enables true zero-
copy data transfer between microservices. But, its I/O primi-
tives are not compatible with existing cloud-native microser-
vices that rely on a POSIX-like socket interface and/or
HTTP/REST APIs, thus requiring application modifications.

D. POSIX-like I/O primitives in X-IO: socket interfaces
To support seamless porting of applications that depend on

the POSIX socket API to leverage X-IO’s shared memory
processing of the X-IO stack, we further introduce a separate
socket interface in X-IO. X-IO’s socket interfaces are exposed
via an abstraction layer, namely X-IO lib, which coordinates
with the X-IO stack and exposes a set of POSIX-like I/O
primitives as listed in Table-I, including Read(), Write(), Lis-
ten(), Accept(), Dial(). X-IO lib currently supports equivalent
Golang-style socket interfaces.
Design of X-IO’s Read() interface: Read() is the basic read
socket interface in X-IO. Similar to POSIX read(), X-IO’s
Read() supports both “blocking” and “non-blocking” modes.
In blocking mode, the caller of Read() is blocked until it
receives a request from the X-IO stack (via the packet handler)
and moves the payload of the request into the receive buffer
provided by the caller. In non-blocking mode, the caller of
Read() is not blocked waiting for the request. This requires
additional programming to ensure the caller can receive the
request, e.g., polling the Read() interface in a while loop until
a valid request is returned.

Two building blocks are required in the X-IO lib to support
a blocking Read(): (1) First is a blocking primitive used
to hold the Read() call unless the condition variable of the
blocking primitive is changed by the X-IO stack. The condition
variable determines whether the blocking primitive is in effect
(based on it being set to TRUE). In our Golang-style socket
interfaces, we use Golang’s built-in “Condition Variable”
(Cond in Golang’s sync package []) as the implementation

TABLE I: A list of POSIX-like socket interfaces in X-IO.
APIs Input parameters Description
Listen() server address Server listens for connections via X-IO stack
Dial() server address Client dials server to establish connection
Accept() null Server accepts connection with client
Read() receive buffer Server/client receives message via X-IO
Write() send buffer Server/client sends message via X-IO

R

X-IO stackApp.

Packet
handler

X-IO Libs

3. RXreceive queue

Read()
1. call 2. blocked

cond. variable

6. dequeue
desc.

5. unblock
Read()

4. enqueue
desc.recv

buffer 7. write recv
buf

8. return

Fig. 4: Read() interface in X-IO

of the blocking primitive in Read(). Cond offers two methods,
Wait() and Signal(), for us to implement the blocking
primitive: Wait() blocks the caller, which owns the Cond,
until Signal() is invoked. (2) Second, a receive queue to
buffer the requests (in the form of packet descriptors) is
required. The X-IO stack, as the producer, enqueues the
received packet descriptor to the queue. On the other hand,
the X-IO lib, as the consumer, dequeues the packet descriptor
from the queue and use the descriptor to copy the payload in
the shared memory to the receive buffer of the Read() call.
Since there is only a single producer and a single consumer,
the queue is lock-free.

Fig. 4 depicts the processing flow of a Read() call in X-
IO. 1 After the application calls the Read(), 2 the Read()
call is blocked on the condition variable (via Cond’s Wait()
method). 3 The X-IO stack receives a request (in the form
of a packet descriptor from a writer application on the other
side). 4 The X-IO stack enqueues the descriptor into the
receive queue. 5 The X-IO stack then calls the Signal()
method to unblock the Read() call. 6 The Read() call is then
unblocked and dequeues the descriptor from the receive queue.
7 The X-IO lib copies the payload from the shared memory

to the caller’s receive buffer, and 8 returns back to the caller.
The caller is then unblocked and continues its execution.

Configuring Read() to operate in non-blocking mode can
be simply done by bypassing the blocking primitive and
directly returning to the caller. This avoids the context switch-
ing penalty compared to the blocking-mode Read(), which
depends on system calls (invoked by Signal() method)
with the kernel involved in order to unblock the Read() call,
resulting in extra context switches and interrupts, which adds
additional delays. However, non-blocking Read() requires the
caller to busy-poll the Read() to inspect the arrival of the
request, leading to high CPU usage. To strike a balance
between the CPU efficiency of the blocking mode and the
high performance of the non-blocking mode, we design a batch
wake-up mechanism that unblocks a set of Read() calls in a
batch to reduce the system call overheads. Thus, we avoid the
use of busy polling and save CPU resources.
Design of X-IO’s Write(): Write() is the basic write socket
interface in X-IO. We only support blocking Write() in X-IO,
which is to ensure all of the request payload is written into the
shared memory buffer before the Write() returns. The Write()
is blocked until the X-IO stack moves the payload from the
send buffer to the shared memory and enqueues the packet
descriptor into the TX ring. There are some cases where a

T

X-IO stackApp.

Packet
handler

X-IO Libs

4. enqueue
desc.

Write()
1. call

2. pass send buffer to
packet hanlder

5. unblock & return

3. write payload
to shm

send
buffer

Fig. 5: Write() interface in X-IO

Write() may be blocked for a longer period, when there are
no free shared memory buffers or the TX ring buffer is full.
The Write() will be blocked until shared memory buffers or
TX ring buffers become available. Fig. 5 shows the processing
flow of a Write() call in X-IO. 1 After the application calls
the Write() with a send buffer input, 2 the X-IO lib passes
the pointer of the send buffer to the packet handler in X-IO
stack. 3 The packet handler copies the payload from the send
buffer to the shared memory. After that, 4 the packet handler
enqueues the descriptor to the TX ring and 5 returns back
to the Write() call. The Write() is then unblocked and control
returns back to the caller.
Concurrent connection support: Both Read() and Write()
interfaces in X-IO require an a priori established connection
for data transmission, which is set up by using Listen(),
Accept(), and Dial(). This retains alignment with the kernel-
based HTTP/TCP communication model using socket inter-
faces. Further, it is desirable to leverage thread-based concur-
rency (i.e., multi-threading) to allow the server application to
service multiple clients in parallel or allow a single client to
connect with multiple servers. Each server-client connection
is assigned a dedicated thread to independently handle the
corresponding data transmission.

The above design, however, increases the complexity of
managing multiple client-server connections simultaneously.
Especially for the receiver (server) side, since the request (in
our case the packet descriptor) has to be transferred to the
Read() call of the correct server thread. Managing simultane-
ous connections on the sender (client) side is straightforward,
as the client application is aware of the server it wants to make
a request to, and can find the appropriate connection before
issuing a Write() call.

To support concurrent data exchanges between client(s)
and server(s), we enable concurrent connections to be setup.
We maintain a local connection table in the X-IO stack.
Each connection table entry contains the connection-specific
information, including the IP and port number of the server
and client application (IP 4-tuple), connection state, and the
receive queue of the Read() interface of that connection.

As shown in Fig. 6, 1 after X-IO stack receives a packet
descriptor, 2 it performs a connection table lookup, using the

X-IO stackX-IO Libsapplication (server)

conn_1.Read()Thread-1

conn_2.Read()Thread-2

conn_3.Read()Thread-3

receive queue

Packet
handler

Conn.
table

lookup
R

IP 4
tuples

2

1

3

Fig. 6: Concurrent connections support in X-IO: concurrent Read()

IP 4-tuple contained in the packet descriptor as the key, to find
the corresponding connection table entry. 3 X-IO stack then
enqueues the packet descriptor into the receive queue of the
corresponding Read() interface.
Connection Establishment & Teardown: We expose several
connection-related socket interfaces in the X-IO lib for higher-
layer applications to utilize: Listen(), Accept(), Dial(), and
Close(). Listen() and Accept() are used by the server appli-
cation for opening the socket, creating a receive queue for
the new connection and waiting for connection establishment
requests; Dial() is used by the client application to initiate con-
nection establishment with the server. The connection estab-
lishment in X-IO is completed through a two-way handshake
between the client and the server. The server-side X-IO stack
allocates a new connection table entry, sets the connection
state to active, and then responds with an acknowledgment
message back to the client for confirmation of the connection
establishment. The client’s X-IO stack, after receiving the
acknowledgment, allocates a new entry in the local connection
table and sets the connection state to ‘active’ to complete
the connection establishment. When Close() is called on a
connection, the X-IO stack releases both its own and the
peer’s connection by deleting the corresponding connection
table entry in the connection table. We reuse the packet handler
in the X-IO stack to process messages related to connection
establishment and teardown.

1 /* X-IO-based server */
2 listener, _ := xio.Listen(server_address)
3 conn, _ := listener.Accept()
4

5 receive_buffer := make([]byte, RECV_MSG_SIZE)
6 n, err := conn.Read(receive_buffer)
7

8 conn.Close()
9

10 /* X-IO-based client */
11 conn, err := xio.Dial(server_address)
12

13 send_buffer := make([]byte, SEND_MSG_SIZE)
14 n, err := conn.Write(send_buffer)
15

16 conn.Close()

Listing 1: An example X-IO server/client pair using POSIX-like socket APIs

Porting existing applications to use X-IO’s socket inter-
faces: Listing 1 shows an example of the server and client
application using X-IO’s socket interfaces. The server appli-
cation calls Listen() to set up the server socket and then calls
Accept() to wait for new connection establishment requests
from the client. After the client calls Dial(), providing the
correct input of the server’s address and port, a connection is
established between the client and the server. Once the connec-
tion establishment is complete, the client and server can use
Read() and Write() for data transmission. Our implementation
of X-IO’s socket interfaces is strictly aligned with Golang’s
native socket interfaces, thus achieving seamless porting of
Golang-based microservices to use X-IO’s socket interfaces.
Limitation of X-IO’s socket interfaces: Although X-IO’s
socket interfaces are built on top of the same shared memory

communication framework as X-IO’s zero-copy interfaces,
an additional copy is introduced when moving the payload
between shared memory and the application’s send/receive
buffer. While it would be ideal to eliminate this additional
copy, the need to be aligned with POSIX-like socket interfaces
to achieve transparent porting currently required this approach
to move the payload between the send/receive buffer and
the shared memory buffer. The design and implementation
of a true zero-copy, POSIX-like socket interface supporting
transparent portability is part of our ongoing work.

E. Synchronous & Asynchronous data exchange with X-IO

Asynchronous and synchronous data exchange between
microservices can be built using either X-IO’s socket interfaces
or X-IO’s zero-copy interfaces.
Asynchronous data exchange with zero-copy interfaces:
For this data exchange, the source microservice (caller) uses
xio malloc() to retrieve a shared memory buffer and write
the request payload. It then uses xio tx() to send the request
descriptor to the destination microservice (callee), which uses
xio rx() to receive the incoming descriptor.
Synchronous data exchange with zero-copy interfaces: For
this setup, the source microservice (caller) and the destination
microservice (callee) both need a pair of xio tx()/xio rx() to
enable the ‘request-response’ communication paradigm. xio
malloc() is called on demand when writing a request or
response into the shared memory.
Asynchronous data exchange with socket interfaces: This
setup requires a pair of Read()/Write() interfaces to establish
a unidirectional channel between the source microservice
(caller) and destination microservice (callee). The caller uses
Write() to send a request to the callee (using Read() to receive).
The caller proceeds with other tasks without waiting for a
response from callee.
Synchronous data exchange with socket interfaces: This
exchange requires two pairs of Read()/Write() interfaces to
establish a bidirectional channel between the source microser-
vice (caller) and destination microservice (callee). The caller
uses Write() to send a request to the callee (using its Read() to
receive). The caller waits on its Read() interface for a response
from the callee (which uses its Write() to send the response).
Case study – using X-IO to support 3GPP SBI: The 5GC is
implemented using virtualized 5GC functions as independent
cloud-native microservices for flexibility and scalability. Be-
cause of this disaggregated design, 5GC functions, especially
the control plane functions, interact over the Service Based
Interface (SBI) recommended in the 3GPP specifications. A
popular implementation of 5GC control plane is free5GC [15],
which implements the 3GPP SBI utilizing the kernel-based
networking stack. However, the kernel-based networking stack
limits the performance of the cellular core control plane,
especially in achieving low latency [16], [17]. Compared to
the existing kernel-based SBI in free5GC, X-IO offers a much
better and performant service for interfacing 5GC functions
with the underlying lock-free shared memory processing.

In addition, free5GC uses Golang as the programming
language for its SBI implementation, returned in REST-
based interfaces over HTTP/2 protocol. X-IO also takes into
account the need to maintain I/O compatibility by offering
HTTP/REST APIs in Golang. This facilitates seamless porting
of 5GC function to use X-IO and helps improve the cellular
core to have much lower control-plane latency.

We build the HTTP/REST APIs using the socket inter-
faces in X-IO. X-IO’s HTTP implementation has several
optimizations to reduce the HTTP data transmission overhead
compared to Golang’s native HTTP implementation (referred
to as Go-HTTP in short) in the “net/http” package [18], which
was extensively used to construct the 3GPP SBI.

X-IO’s HTTP interface sends the HTTP request header
and request’s payload together to reduce the delay for HTTP
transactions. Go-HTTP lacks the optimization for receive
buffer management on a Read() call2. For a large HTTP
data frame whose size exceeds the receive buffer size, Go-
HTTP continues reading the receive buffer in a loop until
it detects “End-of-file”, indicating the end of the payload.
To assemble multiple receive buffer reads into the payload
buffer, each time Go-HTTP completes a receive buffer read, it
copies the data from the receive buffer to the payload buffer.
The size of the payload buffer is determined by the “Content-
length” contained in the HTTP header. X-IO instead chooses
to allocate a large enough shared memory buffer to store
the complete payload, avoiding the assembly and disassembly
on both the sender and receiver side, thus reducing copies
during the HTTP transaction. The shared memory buffers
are allocated during the initialization of the X-IO manager,
resulting in a fixed memory footprint. The resource wastage
of shared memory buffers can be alleviated since the shared
memory buffers are recycled after previous HTTP transactions
are completed, and reused for subsequent HTTP transactions.
We leave this last optimization of buffer management as part
of our future work.

We build X-IO’s HTTP implementation as a Golang pack-
age named “xio/http”. X-IO’s HTTP package keeps the same
semantics as Go-HTTP. Porting an HTTP application (e.g.,
a 5GC function) built on Golang’s net/http package involves
simply replacing net/http package with our xio/http. This
achieves seamless porting to the X-IO framework.

F. Deployment Strategy
To leverage X-IO’s shared memory processing, microser-

vices need to be placed on the same node, especially when
they have large data dependencies among others and are often
organized in a chain. This can be achieved by specifying
the node affinity of microservices in the same chain, when
working with orchestration engine such as Kubernetes [19].
For inter-node communication (e.g., when microservices that
have data dependencies are placed on different nodes), users
would switch to kernel-based networking, e.g., using Linux
TCP sockets. However, the lower bound for the performance

2based on examining the source code [18] of Golang’s net/http package.

64 128 256 512 1K 2K 4K 8K
packet size (Bytes)

0

3

6

9

12

E2
E

la
te

nc
y

(u
s)

io_uring + TCP
io_uring + UDS
XIO

Fig. 7: Round-trip latency comparison
between X-IO’s zero-copy interfaces
and io uring alternatives

64 128 256 512 1K 2K 4K 8Kmessage size (Bytes)
0

5
10
15
20

La
te

nc
y

(u
s)

XIO UDS TCP socket

64 128 256 512 1K 2K 4K 8Kmessage size (Bytes)
0

10
20
30
40
50

La
te

nc
y

(u
s)

XIO data
XIO close
XIO estab.

UDS data
UDS close
UDS estab.

TCP data
TCP close
TCP estab.

Fig. 8: Latency comparison with a single connection: (Left) Persistent connec-
tion; (Right) Short connection. ‘data’ - data transmit delay; ‘close’ - connection
close delay; ‘estab.’ - connection establishment delay.

1 2 4 8 16 32 64 128256512
of conn.

0

10

20

30

40

RP
S

(1
K

re
q/

s)

XIO
HTTP

Fig. 9: HTTP Request per second with
increasing # of connections: X-IO VS.
kernel-based HTTP APIs

of X-IO would be no worse than a complete kernel-based net-
working solution, while the upper bound performance of X-IO
would far outperform kernel-based networking by considering
node affinity when placing microservices so as to fully exploit
shared memory processing.

IV. EVALUATION
Experiment Setup: We compare the performance of X-IO’s
zero-copy interfaces and socket interfaces with different I/O
alternatives based on Linux kernel networking, including basic
socket interfaces (e.g., read()/write()) and io uring [5]. We
consider both TCP sockets and Unix-domain sockets (UDS
in short) as the backend for kernel-based interfaces. We use
the “net” package in Golang that offers the implementation of
socket interfaces. We use liburing [20] (in C) to implement io
uring. We further examine the performance of the HTTP APIs
in X-IO compared with the “net/http” package in Golang. We
set up our experiments on a single node, with an 8-core CPU,
192GB memory, and Ubuntu 20.04 (kernel version 5.15). All
results show the standard deviation.

A. Zero-copy interface performance: compared with io uring
We implement an L2 forwarder function and a packet

generator function (both placed on the same node) using io
uring and X-IO’s zero-copy interfaces separately. The packet
generator sends raw packets to the L2 forwarder, which then
returns packets back to the packet generator. We measure the
round-trip latency. We enable both submission polling and
completion polling for io uring [5]. With submission polling,
the kernel polls the submission ring that contains the I/O
request posted by the application. With completion polling,
the application polls the completion ring that contains notifica-
tion of completed I/O requests. Using submission/completion
polling avoids the use of interrupts with the io uring for
I/O operations between userspace application and kernel. This
achieves the best possible performance for io uring.

Fig. 7 compares the round-trip latency between different al-
ternatives. X-IO achieves 2.8×∼4.1× lower round-trip latency
than io uring (either with TCP socket or UDS). Specifically,
X-IO has constant latency (3.6us) across various message
sizes, demonstrating the benefit of zero-copy shared memory
communication with X-IO. On the other hand, when using
io uring, 4 packet copies are incurred for every packet round-
trip. These packet copies in io uring inevitably impact packet
forwarding performance. The superior performance of X-IO’s
zero-copy interfaces makes it much more attractive for latency-
sensitive applications.

B. POSIX-like socket interface performance
To compare the performance for POSIX-like socket inter-

faces, we implement a benchmark application that contains a
pair of client and server, using various socket interfaces: X-
IO, TCP socket, and UDS. We configure multiple concurrent
connections between the client and server to emulate the
behavior with multiple user sessions. Each user session has
a dedicated connection using a strictly ‘request-response’
pattern, with the client sending the next request only after
it receives a response from the server.

Fig. 8 shows the performance across the different alter-
natives with a single connection. When using a persistent
connection (Fig. 8 (left)), the performance of X-IO is better
than using a TCP socket and has performance close to that
achieved with a UDS. This is not surprising, since X-IO’s
socket interfaces have the same overhead (4 copies and 2
interrupts for a single round-trip) as with the TCP socket and
UDS. It is just that the TCP socket has in-kernel protocol
processing overhead in addition, which makes its performance
slightly worse. Switching to short-lived connections, X-IO
shows 2× and 1.1× latency improvement compared to the
TCP socket and UDS (Fig. 8 (right)). This benefit comes from
the fast connection establishment/close in X-IO, which can
significantly reduce the overall packet transfer latency when
using short-lived connections.

We further extend to having multiple concurrent persistent
connections, over which the client and server exchange pack-
ets. We additionally disable X-IO’s batch wake-up mechanism
(refer to as X-IO-no-batch) to compare against default X-
IO (refer to as X-IO-with-batch) to understand the effect of
batched wake-up in handling frequent wake-up operations. The
“net” package in Golang, by default, leverages Linux epoll to
achieve batched wake-up. The Linux epoll [21] is an I/O event
notification facility that adaptively batches wake-up operations
to unblock higher-layer applications when multiple I/O events
appear, which we consider as a representative implementation

1 2 4 8 16 32 64 12
8

25
6

51
2

of conn.

0

.3K

.6K

.9K

Av
e.

 la
te

nc
y

(u
s)

XIO-with-batch
TCP socket
UDS
XIO-no-batch

1 2 4 8 16 32 6412
8
25

6
51

2
of conn.

0

200

400

600

ba
tc

h
siz

e

1 2 4 8 16 31 63
127

255

511

Fig. 10: (Left) Latency with variant # of persistent connections; (Right)
Batched wake-up (using epoll) in TCP socket and UDS.

in servers with concurrent connection support. Fig. 10 (right)
shows that the batch size of Linux epoll correlates with the
number of connections. We only show the latency results when
the message size is set to 64 Bytes (Fig. 10). The observations
are consistent across a range of message sizes (512B, 1KB,
2KB) that we tested.

As shown in Fig. 10 (left), X-IO-with-batch consistently
has lower latency than TCP socket and is close to that with
the UDS. In contrast, the latency of X-IO-no-batch is always
higher than using UDS. This clearly shows the benefit of
performing wake-up (unblocking) of multiple connections in a
batch that can amortize the overheads of interrupts and context
switches, thus reducing overall latency. However, compared
to UDS, X-IO’s socket interface does not achieve significant
performance improvement. This is mainly constrained by the
copy overhead when moving payload between shared memory
and the application’s send/receive buffer (as the input to the
Read()/Write() call). This motivates our ongoing work to
design a truly zero-copy socket interface for X-IO to further
improve its performance.

C. HTTP/REST API Performance
We study the HTTP performance using a simple HTTP echo

server/client pair built with X-IO’s HTTP APIs and Golang’s
“net/http” package. We vary the number of concurrent HTTP
connections. Each connection is allowed to have one in-flight
request (64Bytes) at a time, i.e., the client can only send out a
new request after receiving the response from the server. We
consider persistent connections in this experiment.

Fig. 9 shows the results of HTTP request per second
(RPS) comparison. X-IO achieves 1.4×∼2.3× improvement
in RPS and latency (not shown) because of the optimizations
in the HTTP support (§III-E). Golang’s “net/http” package
introduces extra data copies when passing the request be-
tween the socket interfaces (i.e., Read()/Write()) and HTTP
APIs (e.g., Get()/Post()), which limits its performance. The
performance gap further increases because of the increasing
CPU overhead from copies with more connections performing
communication in parallel. This clearly shows the benefits of
X-IO’s optimization for HTTP support, which eliminates data
copies for HTTP calls. X-IO scales when handling a large
number of concurrent HTTP exchanges.

V. CONCLUSION

This paper describes X-IO, a high-performance, unified I/O
interface designed for cloud-native microservices. X-IO offers
a set of versatile interfaces that can be used to construct
synchronous/asynchronous communication methods under dif-
ferent microservice scenarios, e.g., NFV, Middlebox, and 5GC.
X-IO builds the communication stack using shared memory,
with lock-free producer/consumer rings. Using X-IO’s zero-
copy interface, X-IO delivers 2.8×∼4.1× better performance
compared to kernel-based io uring interface. X-IO also ab-
stracts the Golang-style socket interfaces to support seamless
porting from a kernel-based socket interface to X-IO. X-IO’s
socket interfaces achieve competitive performance compared
to kernel-based TCP socket and Unix-domain socket. X-IO

further builds HTTP support using the socket interfaces in
X-IO, which helps to ease the development of cloud-native
microservices that often adopt HTTP-style, “request-response”
communication paradigm, while in the meantime, X-IO’s
HTTP interfaces achieve 1.4×∼2.3× better performance com-
pared to the native HTTP interfaces available in Golang.

ACKNOWLEDGMENT

We thank the US NSF for their generous support through
grant CRI-1823270. This work was also supported in part by
the National Science and Technology Council of Taiwan under
grant numbers 111-2221-E-A49-093-MY3, 111-2218-E-A49-
023, and 111-3114-E-A49-001. We thank Poyi Lin of National
Yang Ming Chiao Tung University, Taiwan, for his help in the
implementation.

REFERENCES

[1] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright:
extracting the server from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing,” in Proceedings of the
ACM SIGCOMM 2022 Conference, 2022, pp. 780–794.

[2] S. Qi, Z. Zeng, L. Monis, and K. K. Ramakrishnan, “Middlenet: A
unified, high-performance nfv and middlebox framework with ebpf and
dpdk,” IEEE Transactions on Network and Service Management, 2023.

[3] “Cgo,” https://pkg.go.dev/cmd/cgo, 2023, [ONLINE].
[4] https://man7.org/linux/man-pages/man7/aio.7.html, 2023, [ONLINE].
[5] https://kernel.dk/io uring.pdf, 2023, [ONLINE].
[6] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. K.

Ramakrishnan, and T. Wood, “Opennetvm: A platform for high perfor-
mance network service chains,” in Proceedings of the 2016 workshop on
Hot topics in Middleboxes and Network Function Virtualization, 2016,
pp. 26–31.

[7] Q. Su, C. Wang, Z. Niu, R. Shu, P. Cheng, Y. Xiong, D. Han, C. J.
Xue, and H. Xu, “Pipedevice: a hardware-software co-design approach
to intra-host container communication,” in Proceedings of the 18th
International Conference on emerging Networking EXperiments and
Technologies, 2022, pp. 126–139.

[8] A. Kalia, M. Kaminsky, and D. G. Andersen, “Datacenter rpcs can be
general and fast,” in Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’19. USA:
USENIX Association, 2019, p. 1–16.

[9] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang, “Socksdirect: Datacenter
sockets can be fast and compatible,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 90–103.

[10] “Data Plane Development Kit,” https://www.dpdk.org/, 2023, [ONLINE].
[11] “DPDK Ring Library,” https://doc.dpdk.org/guides/prog guide/ring lib.

html, 2023, [ONLINE].
[12] “DPDK Multi-process Support,” https://doc.dpdk.org/guides/prog

guide/multi proc support.html, 2023, [ONLINE].
[13] “DPDK Mempool Library,” https://doc.dpdk.org/guides/prog guide/

mempool lib.html, 2023, [ONLINE].
[14] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrish-

nan, T. Wood, M. Arumaithurai, and X. Fu, “Nfvnice: Dynamic back-
pressure and scheduling for nfv service chains,” in Proceedings of the
conference of the ACM special interest group on data communication,
2017.

[15] “free5GC,” https://github.com/free5gc/free5gc, 2023, [ONLINE].
[16] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. K.

Ramakrishnan, and J.-C. Chen, “L25gc: a low latency 5g core network
based on high-performance nfv platforms,” in Proceedings of the ACM
SIGCOMM 2022 Conference, 2022, pp. 143–157.

[17] V. Jain, S. Panda, S. Qi, and K. K. Ramakrishnan, “Evolving to 6g:
Improving the cellular core to lower control and data plane latency,” in
2022 1st International Conference on 6G Networking (6GNet). IEEE,
2022, pp. 1–8.

[18] “net/http,” https://pkg.go.dev/net/http@go1.19.4, 2023, [ONLINE].
[19] https://kubernetes.io/, 2023, [ONLINE].
[20] https://github.com/axboe/liburing, 2023, [ONLINE].
[21] https://man7.org/linux/man-pages/man7/epoll.7.html, 2023, [ONLINE].

