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Abstract—While 5G offers fast access networks and a high-
performance data plane, the control plane in 5G core (5GC)
still presents challenges due to inefficiencies in handling control
plane operations (including session establishment, handovers and
idle-to-active state-transitions) of 5G User Equipment (UE). The
Service-based Interface (SBI) used for communication between
5G control plane functions introduces substantial overheads that
impact latency. Typical 5GCs are supported in the cloud on
containers, to support the disaggregated Control and User Plane
Separation (CUPS) framework of 3GPP. L25GC is a state-of-the-
art 5G control plane design utilizing shared memory processing to
reduce the control plane latency. However, L25GC has limitations
in supporting multiple user sessions and has programming lan-
guage incompatibilities with 5GC implementations, e.g., free5GC,
using modern languages such as GoLang. To address these chal-
lenges, we develop L25GC+, a significant enhancement to L25GC.
L25GC+ re-designs the shared-memory-based networking stack
to support synchronous I/O between control plane functions.
L25GC+ distinguishes different user sessions and maintains strict
3GPP compliance. L25GC+ also offers seamless integration with
existing 5GC microservice implementations through equivalent
SBI APIs, reducing code refactoring and porting efforts. By lever-
aging shared memory I/O and overcoming L25GC’s limitations,
L25GC+ provides an improved solution to optimize the 5G control
plane, enhancing latency, scalability, and overall user experience.
We demonstrate the improved performance of L25GC+ on a 5G
testbed with commercial basestations and multiple UEs.

Index Terms—5G, control plane, low latency, shared memory

I. INTRODUCTION

The demand for 5G and beyond technologies is being driven
by the emergence of applications like the Internet of Things
(IoT) and connected vehicles, which rely heavily on cellular
networks for ubiquitous access and low latency. Further, the
deployment of 5G, especially the 5G Core (5GC) and (soon)
the Radio Access Network (RAN), in cloud infrastructure has
been instrumental in its widespread implementation as well
as its scalability. Cloud-based 5G core networks allow for
flexible and efficient resource provisioning, using seamless
scaling to accommodate the diverse demands of connected
User Equipment (UE) and applications.

For a seamless end-to-end low-latency user experience, both
the radio access and as well as the core components of 5G
cellular networks have to improve. Advancements in radio
access technology, such as millimeter wave, have reduced
access network latency to approximately the order of a few
milliseconds (possibly 1 ms [1]). The recent effort shows that
electronic mmWave beam alignment and link acquisition can
be completed within 1-10 ms, allowing a UE’s connection
establishment with the gNodeB to be completed quickly [2].

In addition, the advent of disaggregated 5GC has spurred
significant efforts to re-architect the data plane to meet the
stringent requirements of performance and scalability. A vari-
ety of optimizations have been explored to enhance the 5GC
data plane, including DPDK [3], eBPF [4], SmartNIC [5], and
offloading to hardware switches using P4 [6].

However, the control plane still contributes substantially
to the overall high latency observed in the 5GC. One major
contributor is the potential for increased mobility handovers,
driven by the wide adoption of millimeter-wave cells [7],
which have smaller cell sizes as well as limited coverage,
leading to more frequent handover events. These handovers
have to be handled by the 5G control plane. Additionally,
with the need to conserve energy in batteries on UEs like
mobile phones as well as IoT devices, there will likely be much
more idle-active transitions among the UEs. The proliferation
of 5G UEs (e.g., mobile phones, IoT devices, autonomous
vehicles) further increases the load on the 5G control plane.
The completion times of control plane events, for instance,
a handover process taking 1.9 seconds [8], directly influence
the delay and packet loss encountered by the data packets
transmitted to an end-user device.

The disaggregated 5GC architecture represents a transfor-
mative approach to implementing 5G core networks, moving
away from the monolithic, tightly integrated network elements
of previous approaches to build the cellular core to a flexible
and scalable approach based on microservices. The various
components of the 5GC are implemented as software-based
Network Functions (NFs), interconnected as a chain to ac-
complish the required functionality. Each NF is implemented
as an individual microservice, focusing on a specific task, such
as Access and Mobility Management, Session Management,
Authentication, etc. The use of microservices enables fine-
grained control and allows for rapid deployment and up-
grades of individual components without affecting the entire
5G system. Additionally, this disaggregated approach enables
resource optimization, since NFs can be dynamically scaled
based on traffic demand.

A crucial implementation feature of the 5G control plane
is the Service-based Interface (SBI) recommended by 3GPP,
which has been the de-facto communication standard used for
communication between disaggregated 5G control plane NFs.
However, the use of SBI introduces a number of overheads,
such as data copies, protocol processing, and user-kernel
space boundary crossings [3]. These overheads can result in
increased latency, apart from the penalty due to the traditional



cellular control plane core procedures (details in §IV).
To address the challenge of achieving low-latency commu-

nication in the 5GC control plane, efforts have been made to
explore innovative approaches that harness high-performance
shared memory I/O (i.e., data exchange) for information ex-
change between NFs implementing microservices in the 5GC.
By leveraging shared memory processing, the 5G control plane
can significantly reduce the delays caused by data copies and
protocol processing, resulting in improved response times and
a more seamless user experience. In [3], we discussed L25GC,
a state-of-the-art 5G control plane design developed on top
of OpenNetVM [9], a high-performance shared-memory NFV
platform. L25GC utilizes shared memory processing among
the 5G control plane components, which reduces the com-
pletion time of control plane events (e.g., UE registration,
handover, paging) by almost 50% on average [3].

However, L25GC’s control plane only supports a limited
number of user sessions due to a rather limited implementation
of the shared memory I/O to replace the SBI.1 L25GC chose
to use raw shared memory I/O provided by DPDK, which
operates asynchronously between caller (source) and callee
(destination). For asynchronous data exchange, the caller
typically continues with other tasks without being blocked
and does not wait for a response from the callee. However,
this is incompatible with the HTTP/REST-based SBI, which
primarily operates synchronously between caller and callee,
i.e., the caller sends a request to the callee and waits until a
response is returned.

The mismatch between L25GC’s asynchronous shared mem-
ory I/O and synchronous SBI makes it hard to harmonize them,
unfortunately increasing the complexity of code development
and the difficulty of code maintenance and updates of L25GC.
Further, L25GC’s shared memory I/O only supports stateless
processing. This lack of capability to preserve connection con-
text makes L25GC’s shared memory I/O connection-agnostic
and not able to distinguish between different user sessions. The
implementation complexity and the statelessness of L25GC’s
shared memory I/O eventually impede L25GC’s ability to scale
up, supporting multiple user sessions.

In addition to the mismatch between synchronous and asyn-
chronous I/O, another challenge comes from programming lan-
guage incompatibility. L25GC is adapted from our earlier work
on a 3GPP-compliant 5GC implementation, free5GC [11].
For the purpose of functionality and development velocity,
free5GC chose to use Golang, a high-level programming
language, in its implementation. On the other hand, L25GC’s
asynchronous shared memory I/O is developed with the C-
based DPDK libraries for high-performance networking. This
leads to a need for substantial re-factoring of code when
porting the 3GPP-compliant free5GC to L25GC to reduce the
control plane latency.

We propose L25GC+, an enhancement to L25GC. L25GC+
takes advantage of our newly designed shared memory I/O

1Based on examining the source code [10] of L25GC at the latest commit
hash 74cb035.

interface, X-IO [12], and tackles the pain points of L25GC we
have outlined above, including limited user session support and
the need for complex code refactoring when porting free5GC’s
(or other traditional SBI-based) control plane implementation,
while retaining the performance benefits of L25GC’s shared
memory processing. To achieve this, we re-design the shared-
memory-based networking stack in L25GC to support syn-
chronous I/O between control plane NFs. This avoids heavy-
weight kernel-based networking used in HTTP/REST-based
SBI, while being strictly 3GPP-compliant. To support multiple
user sessions simultaneously in shared memory processing,
L25GC+ introduces necessary connection establishment and
teardown procedures. Important connection states, such as
caller and callee ID2 are kept in a state map maintained
in L25GC+’s shared memory networking stack. This enables
L25GC+’s shared memory I/O to be aware of distinct connec-
tions, on top of which L25GC+ can distinguish different user
sessions, unlike L25GC.

To speed up the development velocity when porting
free5GC to L25GC+, we expose the equivalent SBI APIs
from L25GC+’s networking stack. By leveraging the cross-
language support offered by the CGo interface [13], we mit-
igate the programming language incompatibility between the
lower-layer shared memory transport (developed with C-based
DPDK libraries) and upper-layer Golang-based SBI APIs. This
allows us to seamlessly replace the kernel-based SBI APIs
for existing free5GC control plane NFs, while keeping the
NF implementation unchanged, thus greatly reducing porting
efforts.

To gain a solid understanding of how L25GC+ actually
performs, we evaluate L25GC+ on a commercial testbed with
an increasing number of UEs. We select several representative
control plane events, including UE registration, PDU session
establishment, to evaluate L25GC+ against a popular 5GC
implementation, free5GC [11], which uses kernel-based SBI
in the control plane. Results demonstrate the performance
improvement of L25GC+’s shared memory SBI, especially
when there are multiple user sessions operating concurrently
in the 5GC control plane.

II. BACKGROUND AND RELATED WORK

A. 5G core control plane
The 5G cellular network is typically divided into the RAN

and the 5G core network. The RAN incorporates the wireless
channel, cellular base stations, and the backhaul network, all
working together to establish connections between UEs (i.e.,
typically mobile client devices) and the 5GC. On the other
hand, the 5GC plays a crucial role in connecting UEs to the
Data Network (DN) to access internet services.

The 5GC is further split into the data plane and control
plane. User Plane Function (UPF) is the key NF in the 5GC
data plane, which interconnects the RAN and DN. Fig. 1
depicts the architecture of the 5GC control plane. Unlike pre-
vious generations of cellular core networks, the 5GC control

2Similar to kernel-based TCP/IP stack, L25GC+ uses IP and port numbers
to differentiate between NFs using shared memory communication.
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plane has undergone significant evolution, transitioning to dis-
aggregated NFs. Several crucial control plane NFs play distinct
roles. These include the Access and Mobility Function (AMF),
Network Repository Function (NRF), Service Management
Function (SMF), and Authentication Server Function (AUSF).
This transformation facilitates the implementation of control
plane NFs as cloud-native services. This shift towards a cloud-
native, service-based approach enhances flexibility and scala-
bility in the 5G Core, facilitating more efficient and agile net-
work management. On the other hand, such disaggregated de-
sign requires networking to provide interconnectivity between
NFs, forming a service-based architecture (SBA). These NFs
offer their functionality through the 3GPP-compliant service-
based interface (SBI), which essentially utilizes HTTP/REST
APIs for seamless inter-service communication.
B. Related work
Optimizing 3GPP SBI in 5GC control plane: There has
been a focus on how to reduce the latency of 3GPP SBI in
the 5GC control plane. L25GC [3] is the state-of-the-art 5GC
control plane optimization that seeks to use shared memory
processing to reduce the control plane messaging latency
incurred by kernel-based 3GPP SBI, which is commonly
adopted in existing 5GC implementation, such as our earlier
work free5GC [11]. Although L25GC achieves considerable
latency reduction of various control plane events, its imperfect
design of shared memory I/O, e.g., lack of synchronous data
exchange support, unawareness of connections, making it ill-
suited for a 3GPP-compliant 5GC control plane and fail to
scale up to multiple user sessions. Buyakar et al. [14] propose
to replace the HTTP/REST APIs with gRPC to construct
3GPP SBI, since gRPC shows better scalability, in terms of
CPU utilization and data transmission latency, compared to the
HTTP/REST APIs when dealing with an increasing number
of UEs. However, gRPC still suffers from kernel networking
overhead as HTTP/REST-based SBI, making it less competent
compared to L25GC+.
Optimizing other aspects of the cellular core control
plane: Apart from optimization on 3GPP SBI, there are many
other efforts on optimizing the cellular core control plane.
Neutrino [15] is a 5GC control plane design that also seeks
to reduce control plane latency. However, unlike L25GC+
that focuses on reducing the messaging latency within the
5GC control plane, Neutrino attempts to reduce the messaging
latency between the RAN and the 5GC control plane by

minimizing the data serialization overhead, while being 3GPP-
compliant. This could be a good complimentary to L25GC+.

CleanG [16] and DPCM [8] reduce the latency of 5GC
control plane by redesigning control plane procedures. CleanG
primarily focuses on creating a new control plane protocol that
can simplify the control plane interactions in cellular networks,
thus reducing latency [16]. Another approach, DPCM [8],
reuses the UE-side state to skip unnecessary control plane
procedures (i.e., those used to generate the UE-side state which
is already there). However, both of these proposals are not
3GPP-compliant, which makes them less complimentary to
L25GC+, as our faith of L25GC+ is to keep 3GPP compliance.

Besides latency optimization, [17] seeks to characterize and
model the control plane traffic in cellular cores, which may
facilitate the testing and evaluation of L25GC+’s control plane
design when real traffic is not available due to regulatory
compliance.

III. DESIGN OF L25GC+
We begin with an overview of the L25GC+ and describe

the key building blocks for developing a high-performance
communication paradigm using shared-memory processing,
while providing the necessary synchronous I/O primitives to
replace the kernel-based 3GPP SBI. We then discuss in detail
how to build an SBI on shared memory from the bottom-up.
This includes asynchronous shared-memory processing over
the DPDK, a POSIX-like synchronous I/O interface, and how
we can use the POSIX-like APIs to build a shared-memory-
based SBI. We then implement a seamless port of the 5GC
control plane NFs from the baseline free5GC code-base to
L25GC+.

We describe concurrent user session support in the L25GC+,
including connection establishment, connection tear down, and
user session management during data transfer between control
plane NFs in L25GC+.

A. Overview of L25GC+
Fig. 2 depicts the architecture of L25GC+, which takes

advantage of shared memory processing in userspace for data
sharing between control plane NFs. This avoids expensive
CPU data copy overheads, protocol processing, context switch,
serialization, and deserialization, which are all incurred by the
currently recommended 3GPP SBI. In the userspace of each
worker node, L25GC+ dedicates a shared memory pool and
adopts an NF manager to support shared memory processing.
Information exchange is performed by message descriptor
delivery between NFs (§III-C). The per-node NF manager is
responsible for managing shared memory (e.g., initialization
and removal) and interacts with the protocol stack to provide a
“one-time”, consolidated protocol processing when inter-node
communication is needed. Our current implementation utilizes
the kernel protocol stack for inter-node communication as it
is robust and proven. However, high-performance inter-node
transport protocols, such as RDMA, may be desirable and is
the subject of our future work.

Each L25GC+ NF uses our newly developed I/O stack [12]
for shared memory communication between other NFs that
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Fig. 2. An architectural overview of L25GC+. Each NF can support multiple
user sessions (each represented as a distinct thread) concurrently.

are located on the same node. The stack provides a shared
memory I/O interface with a set of asynchronous communi-
cation primitives, utilizing DPDK [18]. A packet handler in
the I/O stack deals with incoming/outgoing messages (essen-
tially descriptor exchanges). L25GC+ also exploits the lock-
free communication of X-IO [12] to avoid the need for any
potential locks for multiple-producer, multiple-consumer com-
munication (§III-C). Such a communication pattern commonly
exists in 5GC control plane data exchanges.

Connection handling (e.g., establishment/teardown) mes-
sages are processed by the packet handler for connection
management tasks. These are important extensions in L25GC+
that help us to support scalable user sessions going beyond
the capability of the previous L25GC implementation. A local
connection table in the I/O stack maintains the connection
state. The connection related to a data message is identified
by looking up the connection table based on the IP 4-tuple
(source IP and port number, destination IP and port number).
The packet handler directs the message to the right connection
endpoint (i.e., the corresponding user thread) in this I/O stack
(details in §III-E).

The primitives exposed for asynchronous shared memory
I/O by the I/O stack in L25GC [3] are not 3GPP-compliant.
Therefore, it requires extensive refactoring of the baseline
free5GC [11] implementation. Thus, we seek to overcome this
deficiency. L25GC+ introduces an API library (API lib for
short), to provide the necessary synchronous I/O primitives,
enabling the interface to be compliant with 3GPP.

As shown in Fig. 2, the top layer NF code performs several
control plane tasks across the SBI, using synchronous I/O.
This then interacts with the asynchronous I/O stack below
using the API lib, which includes a socket interface to directly
interact with the underlying I/O stack for shared memory
communication. A set of HTTP/REST APIs are provided on
top of the socket interface. L25GC+ utilizes these APIs to
create a 3GPP-compliant SBI. L25GC+’s SBI using shared
memory has the same semantics as the 3GPP’s SBI, just like
free5GC [11], for easy portability to L25GC+.

B. Shared memory management in L25GC+
L25GC+ depends on the NF manager to manage the shared

memory pool. During the initialization of the L25GC+ en-
vironment, an NF manager is created on a designated worker
node. The NF manager then creates a certain number of buffers
within the shared memory pool to be utilized as shareable
backends for exchanging control plane messages between
L25GC+ NFs.

We extensively use DPDK’s libraries [18] to implement
shared memory management in L25GC+. For lifecycle man-
agement (i.e., creation/recycle/destroy) of the shared memory
buffer, we utilize DPDK’s Mempool Library [19]. To enforce
access control of the shared memory pool and to prohibit
unauthorized access, we leverage the security domain design
that is widely adopted in DPDK-based shared memory frame-
works [3], [20], [21], depending on DPDK’s Environment
Abstraction Layer [22] and multi-process support [23] to
provide the necessary memory isolation.

C. Message descriptor delivery in L25GC+
A lock-free descriptor delivery mechanism is the key ele-

ment to derive the value of shared memory communication in
L25GC+. As shown in the overview figure (Fig. 2), each NF
is assigned a pair of producer/consumer rings in its I/O stack.
The producer/consumer rings of the NF are only shared with
the NF manager, thus ensuring a strict single-producer, single-
consumer communication pattern, avoiding the need for locks.
On the other side, the NF manager forwards the descriptor
(based on IP 4-tuples) between the I/O stacks of different NFs.

D. Building the SBI over shared memory: detailed design
We establish L25GC+’s 3GPP-compliant SBI starting from

the asynchronous shared memory I/O adopted by L25GC,
which is neither 3GPP-compliant nor scalable. We build an
asynchronous shared memory I/O interface associated with a
lock-free descriptor delivery mechanism into the I/O stack,
thus offering these as raw I/O primitives to leverage shared
memory processing.

We first introduce L25GC+’s API libs that add synchronous
I/O support on top of the asynchronous I/O stack. The API
libs adopt a layered design: (1) the bottom-layer of the library
provides a set of POSIX-like socket APIs that directly interact
with L25GC+’s I/O stack to leverage shared memory process-
ing, while also providing basic synchronous I/O primitives;
(2) the middle-layer library abstracts HTTP/REST APIs from
the socket APIs, (3) these are then leveraged by the top-layer
library to construct a 3GPP-compliant SBI.

This design choice was made primarily to facilitate ease
of implementation and avoids re-implementing the entire
stack — the implementation of upper-layer HTTP/REST APIs
and 3GPP SBI can be ported from existing solutions (e.g.,
free5GC) by simply replacing the lower-layer socket APIs,
without being re-implemented from scratch.
Asynchronous shared memory I/O over DPDK: We con-
struct the asynchronous shared memory I/O in L25GC+ (also
in L25GC) using DPDK’s RTE RING [24] and Mempool
APIs [19]. The basic I/O primitives that we use from DPDK to
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enable asynchronous shared memory processing include rte
mempool get(), rte mempool put(), rte ring enqueue(), and
rte ring dequeue().

rte mempool get() and rte mempool put() are obtained
from DPDK’s Mempool lib. We use rte mempool get() to
retrieve an empty memory buffer from the shared memory
pool and return a descriptor (pointing to the retrieved buffer)
to the caller NF. rte mempool put(), on the other hand, is used
for recycling the buffer back to the shared memory pool.

rte ring enqueue() and rte ring dequeue() are obtained
from DPDK’s RTE Ring lib. rte ring enqueue() is specifically
used for enqueuing the descriptor into the producer (TX) ring,
while rte ring dequeue() is used for retrieving the descriptor
from the consumer (RX) ring.

The asynchronous access mainly comes from the non-
blocking nature of rte ring enqueue() and rte ring dequeue()
APIs. The call to these APIs immediately returns, leading to a
mismatch in the synchronous communication required by the
upper-layer SBI.
Synchronous shared memory I/O: Following the design of
X-IO [12], we abstract the synchronous I/O primitives of
L25GC+ into two socket APIs, Write() and Read(), main-
taining strict alignment with the POSIX-like socket APIs. We
further add synchronous access by enforcing a blocking call
to Write() and Read(), i.e., the caller of the Write() and Read()
API is blocked until the requested I/O task is accomplished.

The synchronous nature of the Write() API is achieved by
blocking the caller thread until the message is moved from
the send buffer (provided by caller thread) into the shared
memory buffer. Fig. 3 (left half) shows how the Write() API
interacts with the I/O stack to accomplish the transmission of a
message: 1 The caller thread initiates the Write() call with a
send buffer input; 2 The Write() call passes the send buffer to
the packet handler in the I/O stack; 3 the packet handler then
copies the message from the send buffer to the shared memory
buffer. Note that, beforehand, the packet handler obtains an
empty memory buffer and associated descriptor using rte
mempool get() API; 4 The packet handler enqueues the
descriptor to the producer (TX) ring; and then the packet
handler 5 unblocks the Write() call to return control to the
caller thread.

The synchronous Read() API is achieved by blocking the

caller thread until the message is moved from the shared
memory buffer to the receive buffer of the caller thread.
We take advantage of the approach designed by X-IO [12]
to enable the blocking Read() over the asynchronous shared
memory I/O. There are two essential elements to block the
caller of the Read(), including a condition variable [25] and
a receive queue. Note that each user thread owns a dedicated
condition variable as well as a receive queue for the sake of
concurrent user session operations (§III-E).

The condition variable is utilized to suspend the caller
thread of the Read() until its state is updated. Note that the
condition variable is in effect only when its state is TRUE.
We use the receive queue to buffer descriptors whose message
payload has not yet been transferred from the shared memory
buffer to the receive buffer of the caller thread.

These two elements in the Read() interact with the asyn-
chronous packet handler in the I/O stack to accomplish the
blocking receive, as depicted in Fig. 3 (right half): (1.) When
the caller thread initiates the Read() call, (2.) it is blocked on
the condition variable (now set as TRUE). Subsequently, (3.)
the I/O stack receives a descriptor from the NF on the other
side, and (4.) enqueues the descriptor into the receive queue
of the caller thread. (5.) The I/O stack updates the condition
variable to FALSE to unblock the Read() call. (6.) The Read()
call then dequeues the descriptor from the receive queue and it
(7.) copies the message from the shared memory buffer to the
receive buffer of caller thread. Finally, (8.) control returns to
the caller thread. Note that Fig. 3 (right half) shows only the
case when there is a single user session. Details of message
reception for concurrent user sessions are given in §III-E.

Connection management: Similar to a POSIX-like socket
interface (e.g., socket APIs, HTTP/REST APIs, 3GPP SBI),
the synchronous I/O interface in L25GC+ also requires pre-
established connections to facilitate data transmission. We
adopt the approach from X-IO [12] to manage the lifecycle of
connections, including their establishment and teardown. Each
NF’s I/O stack maintains a local connection table, as shown
in Fig. 2, which records essential connection-specific infor-
mation, such as the IP 4-tuple of the source and destination
NFs. Introducing the notion of a connection is a key extension
of L25GC+ beyond its predecessor, L25GC, which allows
L25GC+ to distinguish different user sessions, as described



in §III-E.
Implementation of HTTP/REST APIs and 3GPP SBI in
L25GC+: Our intention is to port the implementation of a
3GPP-compliant implementation like free5GC to L25GC+,
to ensure that L25GC+ also conforms to the specifications,
leveraging free5GC’s development effort. As such, we choose
Golang [26] to develop the API libs in L25GC+. Golang was
the primary programming language that free5GC’s control
plane NFs are written in.

Since we take a layered design approach for our API libs,
we only re-implement the POSIX-like socket interface in
order to interact with our asynchronous shared memory I/O
stack. We keep the upper layer HTTP/REST APIs and 3GPP
SBI unchanged. This is achieved by replacing the imported
Golang’s “net” [27] package3 with L25GC+’s socket API
package. Since our socket APIs keep the same semantics as
Golang, the porting is seamless. The cross-language support
is described next.
Cross-language support: The I/O stack in each L25GC+ NF
is developed in C language, ensuring optimal performance and
reliability. Seamless interaction between the C-based I/O stack
and the higher-layer API libs (in Golang) is achieved through
Golang’s built-in CGo interface [13]. The C-to-Go boundary
crossing incurs minimal additional latency (approximately
70ns in our testbed), showcasing negligible impact on data
exchange performance.

E. Concurrent user session support
Thread-based concurrency is commonly used in representa-

tive implementations of 5GC control plane NFs that support
multiple simultaneous user sessions. Each user session is
handled by a dedicated thread in the control plane NF instance
(typically deployed as a Linux process within a virtualized
sandbox, e.g., container) to accomplish certain control plane
procedures (e.g., UE registration, handover).

In order to differentiate user sessions during control plane
messaging between NFs, we bind a specific connection for
each user session. As shown in Fig. 4, (1) when the destination
NF receives a message descriptor, (2) it looks up its local
connection table in the I/O stack and finds the correct connec-
tion, i.e., user session, to refer to. Subsequently, (3) the I/O
stack can enqueue the descriptor to the connection’s receive
queue, thus ensuring that the message is correctly directed
to the appropriate user session thread. This multiplexing/de-
multiplexing allows seamless concurrent processing of mes-
sages in L25GC+’s control plane.
Concurrency control: L25GC+ adopts the implementation
of 5GC from free5GC [11], which relies heavily on Golang
as the primary programming language for the control plane
NFs. The concurrency support in Golang is implemented
by goroutines [28], which are essentially lightweight threads
managed by the Go runtime. With the connection abstraction
in L25GC+, we can support multiple user sessions using
thread-based concurrency.

3Golang’s “net” [27] package is the official package that offers various
POSIX interface for network I/O.
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Read()
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User 
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Fig. 4. Concurrent user session support in L25GC+. Control plane messages
to different user sessions are de-multiplexed at the I/O stack after user session
table lookup.

However, we observe that certain 5GC control plane events
(e.g., PDU session establishment) incur very frequent context
switches. This is caused by the CPU ‘thrashing’ between
multiple user sessions when they complete the same 5GC
control plane events concurrently using a limited number of
CPU cores on the node. Since each user session requires a
dedicated thread for each of the 5GC NFs to accomplish
the control plane event-related tasks, it results in frequent
thread context switches. This adds additional delay to the event
completion time. As L25GC+ and free5GC share the same
control plane NF implementation, they both suffer from this
performance loss.

To overcome the effect of ‘thrashing’, we introduce a con-
currency control mechanism to limit the number of concurrent
execution of certain events (e.g., PDU session establishment)
that are processed simultaneously by the 5GC control plane
using the available CPU cores on the node. We implement
a rate limiter at the AMF, which is the ingress point of the
5GC control plane. After the concurrency threshold is reached,
additional PDU session establishment requests are queued at
the AMF. We note that the threshold will likely depend on
the number of available CPU cores and their capability, the
complexity of the operations, and likely the mix of operations.
We experimentally determined the suitable concurrency level
of 16 in our current testbed.

F. Deployment strategy of L25GC+
L25GC+ adopts the same placement and scaling strategy as

its predecessor, L25GC [3]. To harness the benefits of intra-
node shared memory processing to minimize the latency of
the 5GC control plane, it is important for L25GC+ NFs to be
co-located on the same node.

In scenarios where inter-node communication becomes nec-
essary (e.g., when resource constraints prevent NF consolida-
tion on a single node), L25GC+ relies on NF managers to
facilitate communication, by offering consolidated protocol
processing. This can be achieved by using a kernel-based
protocol stack or by employing a high-performance inter-
node communication solution, such as RDMA with zero-copy
data transfer primitives. This is part of our ongoing effort.
This approach helps minimize the impact of kernel-based
networking when inter-node communication is required.

It is important to note that the hybrid communication mode
of L25GC+ (combining intra-node shared memory processing
and inter-node kernel-based networking) ensures that the lower
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bound of performance remains no worse than a complete
kernel-based networking solution. On the other hand, the
typical as well as the upper bound performance of the hybrid
communication mode of L25GC+ far outperforms kernel-
based networking, especially when we consider node affinity
to strategically place NFs, thus fully exploiting the benefits of
shared memory processing. This hybrid approach offers a flex-
ible and efficient solution that optimizes performance based on
the specific deployment scenario and resource availability.

IV. EVALUATION

We evaluate the improved performance of L25GC+ using a
real 5G testbed built using 3GPP-compliant commercial base
stations, a variety of UEs (laptops with 5G dongles) and the
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Fig. 6. Latency from 5G CN, tested with commercial UEs and RAN.

L25GC+ running on commercial off-the-shelf (COTS) servers.
We also consider a simulated 5G UE & RAN to evaluate
the performance of L25GC+ as we scale up to more UEs.
We compare L25GC+ with free5GC [11], an open-source,
3GPP-compliant 5GC implementation that has been used in
many consortium-based 5G frameworks, e.g., Magma [29],
SD-CORE [30], and Aether [31].

A. Analysis with commercial UEs and RAN
Commercial testbed setup: Fig. 5 shows the experimental
setup of our real testbed, including the UE, RAN, and 5G core
network (CN). Our 5G RAN contains an RU and a commercial
CU/DU system built on an off-the-shelf computer system. We
use a ‘bare-metal’ server to run the 5G core network, including
both the control plane and data plane. The CU/DU system
connects to the 5GC control plane via the 3GPP N2 interface.
The CU/DU system connects to the 5GC data plane (i.e., UPF)
via the 3GPP-specified N3 interface. The UPF of the 5GC
connects to the data network via the N6 interface.

We choose the 5G small cell from Alpha Networks Inc. [32]
as the RU. We use the commercially available CU/DU from
AEWIN Technologies [33]. The server running the 5GC con-
tains a 16-cores Intel Core i7 13700 CPU and 16G memory.
We install two NICs on the 5GC server: a 10Gbps Intel X520-
DA2 NIC used for N3 and N6 interface in the data plane, and
a 2.5Gbps Realtek RTL8125BG NIC for the N2 interface in
the control plane. We choose the 10Gbps NIC for the data
plane for its higher bandwidth. We use a total of 5 laptops to
emulate multiple UEs. Each laptop is equipped with an Apal
5G Dongle [34] to communicate with the RU in 5G RAN.
Tested control plane events: We select a pair of representative
control plane events to evaluate, including UE registration
and the PDU (Packet Data Unit) session establishment that
follows. During registration, the UE establishes its presence
and identity on the 5GC before accessing 5G services. A PDU
session represents a logical connection between the UE and the
5GC for data communication. The PDU session establishment
creates a dedicated data path between the UE and the 5GC data
plane (i.e., UPF) for handling data traffic. We evaluate L25GC+
with a single UE and also with 5 UEs running concurrently
on the testbed to understand the ability of L25GC+ to support
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Fig. 7. Total latency (including core network and UE/RAN) of control plane
events tested with commercial UEs and RAN.
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Fig. 8. Total latency of various control plane events with simulated UEs and RAN. x-axis: number of UEs.

multiple user sessions in the 5G control plane (unlike L25GC
which had limited support).

Fig. 6 shows the contribution to end-end latency by the
5G core network. The result demonstrates the performance
benefits of L25GC+’s shared-memory-based SBI in a com-
mercial testbed: When handling a single UE, L25GC+ has
1.51× lower latency than free5GC to complete a UE reg-
istration. L25GC+ also achieves 2× latency improvement
compared to free5GC for PDU session establishment. When
5 UEs register simultaneously, L25GC+ saves 1.29× latency
on average. L25GC+ lowers latency by 1.61× on average to
complete 5 PDU session establishment events concurrently.
These improvements come mainly from the use of shared
memory processing in L25GC+, which incurs much lower
communication overheads for control plane NFs to exchange
messages, compared to the kernel-based SBI of free5GC.

In addition, we measure the “total” latency for different
control plane events (in Fig. 7). This includes the latency
contributed by the core network (named “CN”) and the
part contributed by the commercial UE/RAN. The somewhat
slower UE and the disaggregated RAN system in our testbed
reduces the relative impact of L25GC+’s improvements to this
“total” latency. However, with higher-speed UEs (e.g., smart-
phones) and improved RAN implementations, the significant
reduction of the 5GC latency (the “CN” latency) due to our
improvements will lower the overall cellular control plane
latency.

B. Analysis with simulated UEs and RAN
We use the UE & RAN simulator from L25GC [3] to

simulate user events, which allows us to scale up testing with
more UEs. Throughout, we seek to understand the improved
scalability of L25GC+ compared to the kernel-based SBI in
free5GC, in handling multiple user sessions. We additionally
evaluate the latency for paging events in the 5G control plane,
where a UE transitions from idle to active state. A UE typically
moves into an idle state to conserve (battery) energy, which
is important for mobile devices and UEs such as IoT devices.
When either a packet arrives at the 5GC or the UE has to
transmit a (first) packet, the UE is “paged” to wake up the
UE. The time it takes for the 5GC to complete this task and

have the UE transition from idle to active has a direct impact
on the latency experienced by that first packet. L25GC+ seeks
to improve this latency in its control plane implementation.
We vary the number of UEs from 4 to 64 and report the total
latency (as in Fig. 7) that includes the total latency contributed
by both the core network and the simulated UE/RAN.

Fig. 8 shows the total completion latency of different control
plane events when multiple user sessions operate concurrently
in the 5GC control plane. Compared to the kernel-based SBI
in free5GC, L25GC+’s shared memory SBI shows a consistent
reduction in latency as the number of UEs increases up to 64.
L25GC+ reduces UE registration latency by 1.87× on average.
L25GC+ also reduces the average PDU session establishment
latency by 2.1× and average paging latency by 1.6×.

V. CONCLUSION

We presented L25GC+, a low-latency 5G control plane
implementation. L25GC+ is an enhancement to our previous
effort L25GC developed on top of OpenNetVM, a high-
performance shared-memory NFV platform. L25GC+ makes
several key extensions to L25GC, including support for con-
current user sessions using a 3GPP-compliant shared memory
SBI. These two capabilities significantly improve the appli-
cability of shared memory processing of the 5GC control
plane, allowing 3GPP-compliant 5GC implementations such as
free5GC to be seamlessly ported to L25GC+, while retaining
the performance benefits of shared memory processing. Our
evaluation using a testbed with commercial 5G UE and RAN
components shows that L25GC+, with the help of its shared
memory SBI, outperforms a kernel-based SBI implementation.
L25GC+ significantly reduces the control plane latency for
UE registration and PDU session establishment by 1.29×
and 1.61×, respectively, with 5 commercial UEs operating
concurrently.
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